AI INFRASTRUCTURE ALLIANCE
Building the Canonical Stack for Machine Learning
Our Work
At the AI Infrastructure Alliance, we’re dedicated to bringing together the essential building blocks for the Artificial Intelligence applications of today and tomorrow.
Right now, we’re seeing the evolution of a Canonical Stack (CS) for machine learning. It’s coming together through the efforts of many different people, projects and organizations. No one group can do it alone. That’s why we’ve created the Alliance to act as a focal point that brings together many different groups in one place.
The Alliance and its members bring striking clarity to this quickly developing field by highlighting the strongest platforms and showing how different components of a complete enterprise machine learning stack can and should interoperate. We deliver essential reports and research, virtual events packed with fantastic speakers and visual graphics that make sense of an ever-changing landscape.
Download the Enterprise Generative AI Adoption Report
Oct 2023
Our biggest report of the year covers the wide world of agents, large language models and smart apps. This massive guide dives deep into the next-gen emerging stack of AI, prompt engineering, open source and closed source generative models, common app design patterns, legal challenges, LLM logic and reasoning and more.
Get it now. FREE.
AI Landscape
Check out our constantly updated AI Landscape Graphic that shows the full range of capabilities for major MLOps tools instead of just pigeonholing them into a single box that highlights only one aspect of their primary characteristics.
Today’s MLOps tooling offers a broad sweep of possibilities for data engineering and data science teams. You can’t easily see those capabilities in typical graphics that show a bunch of logos so we’ve engineered a better info-graphic to let you quickly figure out if a tool does what you need now.
Events – Past and Future
Check here for our upcoming events and to watch videos from past events. We put on 3 to 4 major events every year and they’re packed with fantastic speakers from across the AI/ML ecosystem.
MEMBERS
ARTICLES
Moving from Model-Centric to Data-Centric AI
Introduction: AI is a rapidly evolving field and up until a few years ago there were distinct model architectures for different tasks, for example, CNN was the go-to for vision tasks and LSTM like networks for language tasks. Then, with the invention of the...
Detecting Intersectional Unfairness in AI: Part 1
This blog series focuses on unfairness that can be obscured when looking at data or the behavior of an AI model according to a single attribute at a time, such as race or gender. We first describe a real-world example of bias in AI and then discuss fairness,...
9 Reasons Why You Need an Immutable Database
An immutable database means the data within it cannot be deleted or modified. There are numerous reasons why an immutable database is beneficial for you and this article explains some of those arguments. Martin Kleppmann, who is a serial entrepreneur and...
ODSC Webinar | Git based CI/CD for ML
In this session Yaron Haviv discusses how to enable continuous delivery of machine learning to production using Git based ML pipelines (Github Actions) with hosted training and model serving environments. Yaron touches upon how to leverage Git to solve rigorous MLOps...
Roles in a Data Team
In this article, we’ll talk about different roles in a data team and discuss their responsibilities. In particular, we will cover: The types of roles in a data team; The responsibilities of each role; The skills and knowledge each role needs to have. Want to listen to...
Machine Learning Monitoring: why it matters and how to get it right
Avoid these common ML monitoring mistakes – your model’s success hangs in the balance. So you’ve built a machine learning model that works well in the lab. You’ve validated it, gotten the green light from the internal stakeholders, ensured that it met any regulatory...
Connect with Us
Follow US