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Agents, Large 
Language Models, 
and the New Wave 
of Smart Apps

When you hear the word agent, you 
might think of 007 or Jason Bourne. They 
can fight crime with one hand and down 
a Martini with the other, and always look 
stylish doing it. 



But since the release of ChatGPT, we've 
seen an explosion of a new kind of agent. 
AI agents are intelligent programs that 
can interact autonomously or semi-
autonomously with their environment. 

Actually, the definition of agents is still evolving at the moment. Traditionally, an agent is defined as 
 that tries to achieve its goals in the digital or physical world, or both. It's got sensors that “see,” “hear,” and “sense” 

its environment. It has “actuators,” a fancy word for the tools it uses to interact with the world, whether that’s an LLM using 
an API the way we use our hands and fingers, a robotic gripper picking up trash, or a self-driving car sensing the 
environment with LIDAR.



But Large language models (LLMs) like ChatGPT and GPT-4, based on the ultra-popular , changed 
what is possible with Agent capabilities. For the first time they give us little “brains” that are capable of performing a wide 
range of tasks, from planning and reasoning to answering questions and making decisions, which were impossible with 
earlier models. 



However, an LLM has a number of well known flaws, such as , which essentially boils down to making things up, 
ingesting the biases of the dataset it was trained on, all the way to having confidence in wrong answers because of a lack of 
grounding. Grounding means that the model can't link the text it's generating to real-world knowledge. For example, it may 
not know for a fact that the world is round and so occasionally hallucinates that it's flat. 



Despite these imperfections, LLMs remain powerful tools. We asked GPT-4 a logic teaser question and it gave us the right 
answer out of the gate, something that smaller LLMs struggle with badly and that no handwritten code can deal with on its 
own without knowing the question in advance.

any autonomous 
software

Transformer architecture

hallucinations

https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Intelligent_agent
https://txt.cohere.com/what-are-transformer-models/
https://machinelearningmastery.com/a-gentle-introduction-to-hallucinations-in-large-language-models/
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A recent report from  on emerging LLM stacks sees agents as purely autonomous pieces of software. 
This means that they can plan and make decisions totally independent of human intervention. 



At the  (AIIA), we define agents a bit differently. We see them as both semi-autonomous software, 
with humans making some of the decisions (aka humans in the loop), and fully autonomous systems too. We also think it's 
essential for people to understand that an agent is not usually a singular, self-contained piece of software, such as an LLM 
itself. We hear the word agent, and it calls to mind a complete entity that is self-contained, mostly because we 
anthropomorphize them and think of them as human, since people are the only benchmark we have for true intelligence.

Andreessen Horowitz

AI Infrastructure Alliance

Usually, agents are a system of interconnected software pieces. The  from a Microsoft research team 
outlines a common and practical approach to modern agents where an LLM uses other models, like an image diffuser (e.g., 

, or a coding model, like , to do more advanced tasks. It may also use APIs the way we use 
our hands and legs. It uses these tools as an extension to control outside software or interact with the world. To achieve this, 
an LLM might train on its own API knowledge as part of its dataset or a fine-tuned dataset, or it might use another external 
model explicitly trained on APIs, like .



At the AIIA, we see an agent as any software system that interacts with the physical or digital world and can make decisions 
that usually fell in the realm of human cognition in the past.

HuggingGPT paper

Stable Diffusion XL) WizardCoder

Gorilla

We call semi-autonomous agents, Centaurs. These are intelligent pieces of software with a human in the loop.

Agents are fully autonomous or almost fully autonomous pieces of software that can plan and make complex 
decisions without human intervention.

We can think of a centaur as “Agents on rails,” a precursor to fully autonomous agents. Centaurs can accomplish complex 
tasks as long as they're well-defined with clear guardrails and as long as someone is checking their work or intervening at 
various steps along the way.



Agents are fully autonomous and can do their jobs with no human intervention. 

https://a16z.com/2023/06/20/emerging-architectures-for-llm-applications/
https://ai-infrastructure.org/
https://arxiv.org/abs/2303.17580
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl
https://huggingface.co/WizardLM/WizardCoder-15B-V1.0
https://gorilla.cs.berkeley.edu/
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A good example of the levels of autonomy in agentic systems comes from the world of self-driving cars and is beautifully 
laid out in the book  by Kai-Fu Lee and Chen Quifan. Autonomous systems are classified by the Society of 
Automotive Engineers into Level 0 (L0) to Level 5 (L5):

AI 2041

L0 (zero automation) means that the person does all the driving, but the AI watches the road and alerts the driver 
against potential problems, such as following another car too closely.

L1 (hands on) means that the AI can perform a specific task, like steering, as long as the driver is paying                 
close attention.

L2 (hands off) means that the AI can perform multiple tasks, like braking, steering, accelerating, and turning, but the 
system still expects the human to supervise and take over when needed.

L3 (eyes off) means that the AI can take over all aspects of driving but still needs the human to be ready to take over 
if something goes wrong or when the AI makes a mistake.

L4 (mind off) is where the AI can take over driving completely for an entire trip, but only on well-defined roads and in 
well-developed environments that the AI understands very well, like highways and city streets that have been 
extensively mapped and surveyed in high definition.

L5 (steering wheel optional) means that no human intervention is required at all, for any roads or environment and 
you don't need to have a way for humans to take over, hence the "steering wheel optional”.

We can think of L0 to L3 as nothing but an extra option on a new car, like air conditioning, leather seats, or cruise control. 
They still need humans at the wheel. These are centaurs in that they need humans in the loop, like most agents today. For 
example, most people would be reluctant to let an agent compose an email to their boss or their mother without reading it 
before sending it.

However, by the time we get to L4, the intelligence behind the car starts to feel like a true intelligence with a mind of its 
own, and it will have a massive impact on society. L4 cars or buses might be public transports that take specific public 
routes confidently, while an L5 car or truck might do deliveries at all hours of the day or be a robot taxi like Uber that can 
take you anywhere.



Since the release of GPT-3 and GPT-4, we've seen a number of attempts to build fully autonomous L5-style agents for the 
digital world, such as  and . Programmers have looked to leverage LLMs to take actions like planning 
complex software requirements, booking plane tickets based on user requests, picking up presents for a birthday party, or 
planning recruitment in a company.



Unfortunately, they mostly don't work yet for long-term planning, reasoning, and execution of complex tasks. We imagine AI 
systems that can come up with a comprehensive marketing plan for a new product, write and create a website, craft all 
outreach messages, get the list of people to reach out to, and then send the emails to get new customers. We are not there 
yet, but that doesn't mean we won't at some point. With so many traditional programmers getting into machine learning and 
applying ideas that data scientists and data engineers wouldn't think of, because these are outside their domain knowledge, 
we're seeing constant improvements constantly in these systems. Fully autonomous agents could be a ubiquitous facet of 
all our lives in the near future or over the next decade.



Many of these fully autonomous projects have sparked tremendous public interest. AutoGPT racked up GitHub stars faster 
than almost any other project in history, but we can no longer take GitHub stars as a true measure of software prowess. The 
tremendous public interest in AI is often driven by sci-fi novels and Hollywood blockbusters, rather than the actual current 
state of the technology. Such outside interest sometimes drives brand new projects to the GitHub star stratosphere, only to 
see actual developer interest in these projects crumble soon after. This happens when cognitive dissonance sets in and the 
software doesn't end up matching people's expectations of a super-intelligent software avatar, like the AI in the fantastic 
movie .

BabyAGI AutoGPT

Her

https://www.amazon.com/AI-2041-Ten-Visions-Future/dp/059323829X
https://github.com/yoheinakajima/babyagi
https://github.com/Significant-Gravitas/Auto-GPT
https://www.youtube.com/watch?v=dJTU48_yghs
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Still, some of those projects continue to attract ardent followers who continue to add new capabilities with AI software such 
as BabyAGI. Not only that but reasoning and planning for agents continues to evolve with software and research projects 
that incorporate new techniques to help LLMs think better, such as  (CoT) prompting, or giving them a 
history that they can recall with projects like the  from a Stanford team, which...

chain-of-thought
Generative Simulacra

“...extends a large language model to store a complete record 
of the agent's experiences using natural language, 

synthesize those memories over time into higher-level 
reflections, and retrieve them dynamically to plan behavior.”

—Stanford Team

Despite all these techniques, agents still struggle with going off the rails and hallucinating and making major mistakes in 
their thinking, especially as the time horizon for independent decision-making increases. Short-term, on-the-rails 
reasoning is often sound, but the longer the agents have to act and make decisions on their own, the larger are their 
chances of breaking down.



Even with all these limitations and caveats, why have agents suddenly gotten more powerful? The answer is simple. 
ChatGPT was a watershed moment in computing and AI history that shocked outsiders and insiders alike. 



Suddenly, we had a system that delivered realistic and free-flowing conversations on any subject at any time. That's a 
radical departure from the past where chatbots were brittle and not even vaguely human. The first chatbot, , was 
created in the 1960s at MIT. We've had Clippy, the famous paperclip in Microsoft Office products in the late 90s and early 
2000s, which was known for being slow and virtually useless at answering any questions at all. We've had Alexa and Siri, 
which can do things like play songs or answer questions by doing lookups in a database. But none of these have really 
worked all that well.



ChatGPT and GPT-4 just feel different. 

ELIZA

That's because most of these bots of the past were often brittle rule-based systems. They were glorified scripts that were 
triggered based on what you said or wrote. They couldn't adapt to you or your tone or writing style. They had no real  
context about the larger conversation you'd had with them. They felt static and unintelligent. Nobody would mistake them 
for humans.



The architecture of GPT-4 is a secret, although we know it is based on transformers. We'd had speculation that it's a 
massive transformer with a trillion parameters or that it's not a big model at all but 8 smaller models, known as a 

, which leverages a suite of smaller expert models to do different tasks. Whatever the actual architecture of 
the model is, which we will only know when it is officially made public, it is more powerful and capable than any other model 
on the market and remains the highest watermark as of the time of this writing. Even models like Meta's open source 
marvel , which was launched a year later, can't replicate its performance, though they approach it.



That said, it's only a matter of time before other teams create a more powerful model. By the time you read this report, the 
arms race to create ever more powerful models by open source teams like  and  or any 
of the proprietary companies piling up GPUs to build their own models, like , , , , 

, , and , may already have produced such a model.



With more powerful software brains powering today's agents, we have much more powerful systems at hand. They're the 
engine that drives centaurs and agents to much more useful capabilities. Unlike the relatively limited capabilities of 
enterprise  (RPA) of the past, which were typically limited to well-defined processes and 
structured data, we have agents and AI-driven applications that can work in the unstructured world of websites, documents, 
and software APIs. These agents can summarize websites with ease, understand what's going on the text, offer an opinion, 
act as language tutors and research assistants, and much more. 

Mixture of 
Experts (MoE)

Llama 2

EleutherAI Meta's AI research division
Google Anthropic Cohere Inflection Aleph 

Alpha Mistral Adept

robotic process automation

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2304.03442
https://dl.acm.org/doi/10.1145/365153.365168
https://pub.towardsai.net/gpt-4-8-models-in-one-the-secret-is-out-e3d16fd1eee0
https://pub.towardsai.net/gpt-4-8-models-in-one-the-secret-is-out-e3d16fd1eee0
https://ai.meta.com/llama/
https://www.eleuther.ai/
https://ai.meta.com/
https://ai.google/
https://www.anthropic.com/
https://cohere.com/
https://inflection.ai/
https://www.aleph-alpha.com/
https://www.aleph-alpha.com/
https://mistral.ai/
https://www.adept.ai/
https://enterprisersproject.com/article/2019/5/rpa-robotic-process-automation-how-explain
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It's really only the beginning. ChatGPT was the starting point but not the end game. Since GPT, we've had a surge of capable 
open source models. Hugging Face tracks these models with an open suite of tests on a leaderboard for  
models. It seems like every week a new open source model takes the crown. We've seen Meta's  and , along 
with , , , and not to mention specialized models like , which specializes in working with APIs. 



Venture capital is pouring into foundation model companies so that they can spin up massive supercomputers of GPUs. 
OpenAI attracted over 10B USD in investments, and recently Inflection AI announced 1.3B USD in funding to create a 
22,000 strong Nvidia H100 cluster to train their latest models. With all this capital, OpenAI will not remain the only game in 
town. At the AIIA, we expect a massive flurry of capable models to power the intelligence apps of today and tomorrow.



Agents offer a potentially new kind of software that's beyond the capabilities of traditional hand-coded software written by 
expert programmers. The power of these LLMs and the middleware that's rising up around them makes it possible for very 
small teams to build highly capable AI-driven applications with one to ten people. It's an extension of the , 
where a small team of 50 developers was able to reach 300M people with their application because they could leverage an 
ever-increasing stack of sophisticated prebaked software to build their platform, everything from readymade UIs to secure 
encryption libraries. 



The power of LLMs—along with a suite of models that do a particular task very well, like , 
, , and , coupled with a new generation of middleware—is making it possible for even smaller 

teams to reach a wider audience. The bar to building great software has lowered again, and history shows that whenever 
that happens, we see a flurry of new applications.



It's also possible to build smaller, more focused apps now, like a bot that can ingest a series of legal documents and answer 
questions about what jurisdictions a company might face lawsuits in, an app that can research a massive number of 
companies and tell you which ones are good for your marketing team to contact, or an app that can ingest news articles, 
write summaries of them and create a newsletter. Stacking these agents together holds the potential of creating intelligent 
microservices that can deliver new kinds of functionalities. 



With state-of-the-art LLMs behind the scenes that are broadly capable of powering agents whose sensory input from 
keystrokes, web pages, code, external models, and knowledge repositories, we now have agents that can do things we only 
saw in the movies, like automatically upscaling photos and adding hidden or missing details to them or reasoning about 
what is on a web page or in a PDF document and making complex decisions. An old writer's trope in every detective show is 
where the police officers find some grainy VHS footage and their computer team ‘enhances' that footage to get the next big 
clue in the case. That was impossible before, but now we have systems that are a lot like  where 
Detective Deckard, played by Harrison Ford, takes an old photo, puts it into an analysis machine, talks to the machine and 
tells it what to do, and the machine enhances the photo to bring out the hidden spots.



We've gone from only robotics researchers and data scientists building agents to traditional programmers building agents 
to do complex tasks that were, only a short time ago, impossible with handwritten code and heuristics. 



Despite all these amazing new capabilities, none of this is without its challenges. LLMs are nondeterministic systems, and 
they don't always behave or act in a way that's predictable. A traditional handwritten piece of software can only fail in so 
many ways. If we have a subroutine that logs a user into a website, there are only so many ways it can go wrong. But LLMs 
and other models can produce wildly unpredictable results from task to task. A diffusion model like Stable Diffusion XL 
might excel at creating photorealistic portraits but fail miserably at making a cartoon-style painting of a cute robot. Even 
worse, because these systems are so open-ended, there is no real way to test all of the possibilities that someone might use 
them for on a given day. One user might ask an LLM simple questions about how to make a good dinner for their wife, 
another might try to trick it into revealing security information, while still another might ask it to do complex math.



Wrangling these systems to create useful software is an ongoing challenge. So let’s dive in and look at the promises and 
perils of LLMs, generative AI, and agents for both small business and enterprises. We'll start with the new emerging stack 
that's enabling people to create these applications, and then move on to challenges every company or person looking to 
adopt or build these systems might face.

open source
LLaMA Llama 2

Vicuna Orca Falcon Gorilla

WhatsApp effect

SAM (segment anything model)
Stable Diffusion Gen1 Gen2

the Bladerunner scene

Up Next: The New Stack for Intelligent Apps

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://ai.meta.com/llama/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2306.02707
https://falconllm.tii.ae/
https://gorilla.cs.berkeley.edu/
https://techcrunch.com/2014/03/02/the-whatsapp-effect/
https://segment-anything.com/
https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion
https://research.runwayml.com/gen1
https://research.runwayml.com/gen2
https://www.youtube.com/watch?v=qHepKd38pr0
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The New      
Stack for 
Intelligent Apps

In 2022, the AIIA published a report on 
, which functions at the 

data science level of AI development. It was 
created for data scientists, data engineers, and 
systems administrators to handle the complex 
challenges of gathering and cleaning data, 
labeling it, training models, and deploying them 
into production.

the 
state of MLOps software

The MLOps industry was created by various engineers and data scientists who'd done machine learning projects at big 
software companies like Google, Meta, Airbnb, and Amazon. These companies helped take machine learning out of the 
universities and bring it into the commercial enterprise. Because these teams were working at the cutting edge of a new 
kind of software development, they had to build all their software infrastructure from scratch to support those efforts. Many 
of those engineers learned those lessons and then spun out companies of their own to solve those problems for traditional 
enterprises that wanted to leverage the power of machine learning in their own businesses.



The basic premise of the MLOps revolution was the underlying assumption that every business would have a fleet of 100 or 
1000 data scientists and data engineers and be doing advanced machine learning, training their own models from scratch 
and deploying these models to production. That world is looking less and less likely now. While many advanced companies 
do train their own proprietary models, we are increasingly seeing people move “up the stack” to deal with machine learning 
at a higher level of abstraction.



This fits well with the pattern of history and technology where we “abstract up the stack,” which means we hide away the 
complexity of something previously complex, which allows more people to do that thing well. Hammers and nails make it 
easier to build houses of multiple stories, as do precut boards of standard sizes. The LAMP stack, where we had Linux, 
Apache, MySQL, and PHP, made it easier for people to build complex websites. But it still wasn't easy and required a 
tremendous amount of programming and design expertise. Later, we had WordPress built on top of that stack, which 
brought in an even wider array of people who could build simple websites much more easily without any programming 
expertise. Later we had complex themes like , which made designing a beautiful website incredibly easy.



The same thing is now happening in the world of AI. We're moving up the stack—where most teams needed to gather a 
dataset, clean it and label it, and then train a model from scratch, test it, deploy it, and run it—to a world where most teams 
will take a base model or foundation model created by an outside team and deploy it as in, fine tune it, or simply call to it via 
API as it runs on a cloud service.

Divi

https://ai-infrastructure.org/ai-infrastructure-ecosystem-report-of-2022/
https://ai-infrastructure.org/ai-infrastructure-ecosystem-report-of-2022/
https://www.elegantthemes.com/gallery/divi/
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We're moving from a world where data scientists train their own models from scratch for every use case to one where 
foundation models and base models are becoming the default. More teams are connecting via API to proprietary models 
like  and GPT-4, or are using open source models as a base rather than building their own models. If these teams can 
use the models with no retraining whatsoever, all the better, but if not, then with some instruct tuning or fine tuning, the 
model is ready to do the job. 



At the moment, we're seeing a flood of fine tuning companies that help speed up the process of rapidly sculpting a 
prebaked model to your needs, many of which are quite good. However, it's likely that in only a few years’ time, we'll 
abstract up the stack even further and fine tuning won't be an essential step for most teams either. As soon as a team can 
pick between teaching a prebaked medical model with a few custom examples versus the more complex and time-
consuming task of fine tuning, they will jump at the chance to take the path of least resistance. 



The release of ChatGPT marked a sea change, shifting us from pure data science to the dawn of AI-driven applications. 
Increasingly we're seeing many traditional coders and applied AI engineers build these apps either without data science 
teams or with smaller supporting data science teams. Supporting these new applications are traditional and nontraditional 
infrastructure companies, GPU cloud providers, foundation model providers, open source model makers, NoSQL, vector and 
traditional databases, model hosting and serving companies, fine tuners, and more. 



So let's take a look at this emerging stack. 



But before we go further, we need to keep one thing clearly in mind. The keyword here is “emerging” stack. 



At the beginning of any technological shift, we see a massive eruption of new tools, frameworks, and ideas. Most of them die 
on vines. Others grow and become incredibly popular, only to get swept away later by better emerging technologies. 



Let’s take the example of Docker. As Docker caught on, multiple companies and projects rushed to build large-scale Docker 
management engines. Docker itself created the ill-fated  application and other management projects. VMWare built a 
proprietary manager which also worked with their virtual machines. Mesos grew very popular, very fast. 



What do all these applications have in common? They're all dead or mostly dead. 



All of them were replaced by , which became the default way to manage large clusters of containers. 



Even VMWare, which vowed never to adopt the platform and continue pushing forward with its own proprietary engine, 
eventually jettisoned its offering and went all in on Kubernetes.



Kubernetes itself was a . It came from inside Google, which had a decade of using pre-Docker 
containers and managing them at scale. Google built Borg in 2003–2004 and then followed that up with Omega, its 
successor, in 2013. Finally, they created Kubernetes, an open source successor to Omega that learned from all the hard 
lessons of a decade of managing containers. 



This is how technology evolves. You can't solve problems before they happen, and when you solve one problem, new, 
unexpected problems emerge. The most robust frameworks are the ones that learn the lessons of the past, deliver 
incredibly meaningful abstracts of common tasks, are tremendously scalable, and attract a constellation of plugins and 
support tools around themselves. At the AIIA, we fully expect much, if not all, of the stack to evolve over the coming decade, 
as developers work more and more with AI and learn the problems and pitfalls they need to overcome.



When it comes to generative AI and agents, several major components are emerging as part of the stack and a secondary 
set of components that are still coming to fruition.

Claude

Swarm

Kubernetes

third-generation software

LLMs

Task-specific Models

Frameworks/Libraries/Abstractions

External Knowledge Repositories

Databases (Vector, NoSQL, Traditional)

Front Ends (APIs, UI/UX)

https://claude.ai/login
https://dockerlabs.collabnix.com/intermediate/swarm/difference-between-docker-swarm-vs-swarm-mode-vs-swarmkit.html
https://kubernetes.io/
https://blog.risingstack.com/the-history-of-kubernetes/
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Beyond the basics of the software stack, there are several critical components that this stack gets built on top of and can't 
live without:

AI Chips Application Infrastructure Hosting

We're also seeing the rise of a secondary set of components that will likely become more important over time.

AI App Hosting

Fine Tuning Platforms

Monitoring and Management

Middleware (Security)

Deployment

Finally, we see some missing components that simply don't exist yet that we'll talk about later. 



Let's start with the key components. 



First up are LLMs, which are the key to this new kind of application. They've emerged as the brains of the applications, and 
they use tools to do tasks and make decisions in a semi-autonomous or fully autonomous way. They are the only truly 
general-purpose models, capable of a wide range of tasks, from question answering, to summarizing, to text generation and 
multi-media generation, to logic, reasoning, and more. 



It's crucial to note that they almost certainly won't remain the brains of AI forever as researchers discover new kinds of 
architectures and ways to model or mimic intelligence better. For now, they're the workhorses and the best generalized 
form of intelligence we've ever created. But they are not perfect and need external tools to really get the job done. These 
tools come in many forms. 



Now let's look at the constellation of frameworks, tools, code, and infrastructure you need to make LLMs work in production.



The first is the code itself. It could be traditional, handwritten code by programmers, automatically generated code created 
by the LLM on the fly, code generated collaboratively by the programmer and the model, or any combination of the above. 



The second major component is frameworks, like , , , or , which abstract 
common tasks like fetching and loading data, chunking the data into smaller bites so that they can fit the LLM's context 
window, fetching URLs, reading text, receiving prompts from the user, and more. These libraries might also be more focused 
and niche, like  from Meta's AI research lab, which speeds up vector and semantic searches. Most of these are Python 
libraries that have evolved over time to be more comprehensive in their capabilities and turned into “frameworks,” which 
are a more comprehensive set of libraries or tools. These frameworks do the heavy manual lifting for an agent, such as 
fetching and streaming data back and forth and taking in and outputting prompts and answers. 



Of course, not everyone uses these frameworks and libraries.  and developers often either 
love it or hate it. It's very popular with coders who are figuring out how to work with language models. However, many 
advanced developers still prefer to write their own abstractions or libraries at this point. We expect that to change over time 
as AI applications become more ubiquitous and we get better abstractions in many different libraries. Today, it would be 
almost absurd to write your own Python web scraping library when you can use  or to write your own scientific and 
numerical calculator instead of using . It is incredibly rare for anyone not to use well-written and performant 
libraries to save time and avoid reinventing the wheel.



The third major component is task-specific models. LLMs are not good at everything, but app designers can augment their 
capabilities by calling other models that are built to do a specific task really well. These are models that do one thing and 
one thing only well.  was trained from the ground up on APIs, so it interacts with APIs incredibly well.  
is a well-known open source image generator.  delivers automatic speech recognition.  excels at code 
interpretation and development.

LangChain LlamaIndex Haystack Semantic Kernel

Faiss

LangChain itself is controversial

Scrapy
NumPy

Gorilla Stable Diffusion
Whisper WizardCoder

https://docs.langchain.com/docs/
https://www.llamaindex.ai/
https://haystack.deepset.ai/
https://github.com/microsoft/semantic-kernel
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://generallyintelligent.substack.com/p/lets-talk-about-langchain
https://scrapy.org/
https://numpy.org/
https://gorilla.cs.berkeley.edu/
https://github.com/CompVis/stable-diffusion
https://openai.com/research/whisper
https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder
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The fourth major component is external knowledge repositories, like , which uses symbolic logic and various 
algorithms to give clear, structured answers to specific kinds of questions, like doing math or giving the correct population 
of Papua New Guinea. LLMs are notorious for making up information. They basically work by predicting what the next word 
should be when responding to someone, but that prediction may change if they have a low threshold of confidence in their 
answer. They also don't have the ability to say “I don't know” or “I don't feel confident,” so they just make up something that 
sounds plausible but might be total nonsense. External knowledge repositories ground the model in the real world, giving 
them facts and data they can pull from to give clear, crisp, precise answers.



The fifth major component is databases: traditional SQL-style databases, like Postgres; NoSQL databases, like ; and 
vector databases, like Pinecone. A program may use any or all three types of databases. 



Vector databases are new for many organizations and developers. There are a flurry of them hitting the market, like 
, , ,  (which combines the concept of a data lake and vector database in one), 

, , , and . They don't store information directly but encode it as vectors. This delivers some 
unique advantages, like the ability to cluster data that are roughly similar and find them through semantic searches. That 
lets developers to use it as a kind of long-term memory of LLMs, because it can retrieve similar prompts and answers 
without finding exact matches. It could also be used to cluster all similar functions in a code repository for easy search     
and retrieval. 



NoSQL databases excel at large-scale document management that would be hard or impossible to store in              
traditional databases. That lets developers load up huge unstructured data repositories of documents, like legal archives or 
web articles.



Finally, we have the old workhorses of the database world, row-and column-based databases like Postgres, which store 
simpler information that can be extracted during the application work. An app might read lots of documents in a NoSQL 
database, only to extract the key learnings and put those bite-size learnings into a vector database. Of course, it's not as cut 
and dried as Postgres, which can be adapted to store vectors with projects like . We expect that many teams will 
simply opt for a database that can store traditional data and vectors as long as this overlay becomes highly performant and 
well developed. Time will tell whether we need specialized vector databases or a database that combines functions on a 
single distributed and scalable platform.



Next up, we have front ends. These come in two traditional flavors and are already a mainstay of web applications and 
mobile apps. The first is APIs, and frameworks like  and have rapidly gained mindshare as a way to build 
quick and responsive APIs to interact with any intelligent applications that developers put together.



APIs maintain a consistent way for third-party programs to interface with a program or platform without having to go 
through an ever changing front web page. UI frameworks are intended to help developers rapidly put together a usable 
front-end GUI for an application. Here, we're seeing a repurposing of popular and powerful web app frameworks, as there is 
not much need to reinvent the wheel. Developers are building with , , , and , to name a few.



Without AI chips, none of this can run. By far, the most dominant player is , with their A100 and H100 lines. Rivals like 
 recently rolled out their Instinct MI200 series to compete with H100s from Nvida. We've also seen big techs roll out 

their own custom training and inference chips, with Google delivering their advanced  or tensor processing units and 
Azure and Amazon rolling out their own chips as well. We've also seen new chip creators focused totally on AI with brand 
new architectures, like  and , and various edge computing engines. 



Traditional infrastructure providers and cloud providers, like AWS, Google, and Azure, have raced to build architectures that 
allow people to quickly spin up GPUs/TPUs/ASICs. They're also spinning up new software infrastructure to support AI, plus 
they already have key infrastructure in place for web applications that end up serving AI apps as well, like Docker and 
Kubernetes, software load balancers, highly available database clusters, and routing. We're also seeing datacenter providers 
focused completely on GPU infrastructure at scale, like .



Together, all these components make up the core stack of next-generation applications. But the story doesn't end there. 
Some of the components, particularly AI Middleware, are still emerging at the time of this report's writing. We expect this 
new suite of additional components to take off in the coming years, as more and more AI applications come to market and 
face new challenges, from scalability to security to compliance. Let's turn to these now.



AI App hosting platforms run inference for AI-driven applications that have their own models and host the various 
databases and frameworks needed to run those applications. Typically, these are containerized workloads. We see 
traditional cloud providers in the mix here, like Azure, Amazon, and Google, as well as GPU specialization companies, like 

 and . 

Wolfram Alpha

Redis

Pinecone Chroma DB Weaviate Activeloop
FeatureBase Qdrant Milvus Vectara

pgvector

FastAPI Express.js 

React Next.js Vue.js Flutter

Nvidia
AMD

TPUs

Cerebras Graphcore

CoreWeave

CoreWeave Runpod

https://www.wolframalpha.com/
https://redis.com/
https://www.pinecone.io/
https://www.trychroma.com/
https://weaviate.io/
https://www.activeloop.ai/
https://www.featurebase.com/
https://qdrant.tech/
https://milvus.io/
https://vectara.com/
https://github.com/pgvector/pgvector
https://fastapi.tiangolo.com/
https://expressjs.com/
https://react.dev/
https://nextjs.org/
https://vuejs.org/
https://flutter.dev/
https://www.nvidia.com/en-us/
https://www.amd.com/en.html
https://cloud.google.com/tpu
https://www.cerebras.net/
https://www.graphcore.ai/
https://www.coreweave.com/
https://www.coreweave.com/
https://www.runpod.io/
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Middleware is any software that helps the program function or that manages some aspect of the application’s 
functioning. It's a broad category of applications that sits adjacent to or in the middle of applications to give them 
additional powers, protect the applications, or keep them on the rails. It could be a security and logging system, prompt 
versioning, authentication, security, document ingestion and processing, or more. An example is , which can 
enforce correctness on LLM outputs.



Security deserves its own subcategory of middleware here. As these apps grow and proliferate, they will become one of 
the primary attack surfaces. A  demonstrated automated attacks against LLMs that jailbreak them 
and cause them to ignore their safeguards to give out information like how to make a bomb. A great example of security 
middleware is , which hardens an application against prompt injection attacks. The Bosch team has AIShield and a 
secondary product that focuses on protecting LLMs from attacks called , which can act as a wrapper 
around LLMs to prevent disclosure of PII or other jailbreaks and attacks.  



We expect there to be a robust suite of middleware tools that mirror the capabilities of the enterprise and cloud era of 
computing. For instance, these days, it's easy to find fantastic antivirus software that's highly advanced and good at 
stopping new and emerging threats. Software like ESET antivirus uses rules, heuristics, and neural nets to stop viruses 
dead in their tracks. We expect to see the emergence of a robust set of agent-specific protection systems that stop 
prompt injections and other emerging attacks, as well as tools that monitor logic errors and more. 



Fine tuning platforms help people take base models, feed them additional training data, and tune them to a specific use 
case. We see traditional platforms for training and creating models from scratch, like , ,  
(purchased by ),  (purchased by HPE), , along with big cloud MLOps stacks like Amazon’s 

 suite, Google’s , and Microsoft’s  running fine tuning pipelines, as well as 
newer companies like , , and , which specialize in fine tuning LLMs. We 
expect more and more companies to offer foundation models that can be easily fine-tuned and for the process to 
become much more automated and swift.



Monitoring and management tools have been with us from the dawn of MLOps and are starting to pivot to include 
meaningful metrics for LLMs (such as hallucination detection or conversation logging), and we have companies like 

, , , and  (which include an LLM benchmarking tool and building tools to monitor smart apps 
better),   (for data quality management), and .



We’re also starting to see the beginning of benchmarks coming from the open source community. The 
 to test agent capabilities on various tasks. We expect to see many more in the coming months 

and years.



Deployers are the last category, which include any software that deploys prototype or production apps to the cloud or to 
serverless backend providers. A good example is , which deploys baked LLM apps to any major cloud and looks 
to stay agnostic to the cloud backend. It could also be an agent-based builder platform like , which looks to 
wrap together app development and deployment in one place. Model deployers like , , 

, and  fit in here, too, as many teams use a suite of custom models, in addition to LLMs, to get the job done.



Now that we've provided a high-level overview of the various parts of the emerging stack for AI-driven applications and 
agents, lets zero in on some of the unique aspects of this layer of the stack.

Guardrails

recent research report

Rebuff
AIShield.GuArdIan

ClearML HPE’s Ezmeral MosaicML
Databricks Pachyderm Anyscale

SageMaker  Vertex Azure Machine Learning
Humanloop Entry Point AI Scale’s LLM fine tuner

Arize WhyLabs TruEra Arthur
Infuse AI’s PipeRider Manot AI

AutoGPT team 
just released a benchmark

SkyPilot
Steamship

Seldon MakinaRocks’ Runway
Iguazio Modzy

Up Next: Building AI-Driven Apps

https://docs.guardrailsai.com/
https://llm-attacks.org/
https://github.com/protectai/rebuff
https://boschaishield.co/guardian
https://clear.ml/
https://www.hpe.com/us/en/solutions/ezmeral-machine-learning-operations.html
https://www.mosaicml.com/
https://www.databricks.com/
https://www.pachyderm.com/
https://www.anyscale.com/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai/
https://azure.microsoft.com/en-us/products/machine-learning
https://humanloop.com/
https://www.entrypointai.com/
https://scale.com/custom-llms
https://arize.com/
https://whylabs.ai/
https://truera.com/
https://www.arthur.ai/
https://www.infuseai.io/
https://www.piperider.io/
https://www.manot.ai/
https://github.com/Significant-Gravitas/Auto-GPT/tree/master/benchmark
https://github.com/Significant-Gravitas/Auto-GPT/tree/master/benchmark
https://github.com/skypilot-org/skypilot
https://www.steamship.com/
https://www.seldon.io/
https://www.makinarocks.ai/en/
https://mrxrunway.ai/
https://www.iguazio.com/platform/
https://www.modzy.com/
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Building AI-driven apps is more akin to traditional programming versus the pure data science that we see in the MLOps 
world. While MLOps software is built for data scientists and data engineers to develop and train models from scratch, the AI-
driven app layer is a higher level of abstraction where prompt engineering, traditional coding and systems deployment, and 
monitoring and management all play outsized roles.



Perhaps the biggest difference at this layer of the stack is that most teams will never train a model from scratch. Instead, 
they'll take an existing model or models and try to use them as is or attempt to instruct them or fine tune to their needs. 
Only if there is no model that does exactly what they want or if they have a highly unique dataset will teams train their own 
models. These new models tend to be used in concert with existing base or foundation models to augment their 
capabilities. For instance, a company like , which generates beautiful blog posts from educational videos with 
perfectly formatted code, uses both GPT models and their own proprietary model to complete the task.



We can look at the ways of building AI-driven applications anchored by an LLM in order of complexity and cost as outlined 
by machine learning pioneer .

Contenda

Andrew Ng in his blog at the Batch

“Prompting. Giving pretrained LLM instructions lets you build a prototype in minutes or hours . 
Earlier this year, I saw a lot of people start experimenting with prompting, and that momentum continues unabated. 
Several of our  teach best practices for this approach.

without a training set

short courses

One-shot or few-shot prompting. In addition to a prompt, giving the LLM a handful of examples of how to carry out a task 
— the input and the desired output — sometimes yields better results.

Fine-tuning. An LLM that has been pre-trained on a lot of text can be fine-tuned to your task by training it further on a 
small dataset of your own. The tools for fine-tuning are maturing, making it accessible to more developers.

Pretraining. Pretraining your own LLM from scratch takes a lot of resources, so very few teams do it. In addition to general-
purpose models pretrained on diverse topics, this approach has led to specialized models like BloombergGPT, which knows 
about finance, and Med-PaLM 2, which is focused on medicine.”

Building            
AI-Driven Apps
Building AI-driven apps is not a matter 
of simply picking the right stack. There 
are a number of key differences 
between AI-driven applications and 
traditional applications, such as prompt 
engineering, not to mention the unique 
parts of the AI app stack that don't 
usually exist in classical applications, 
such as vector databases.

https://contenda.co/
https://www.deeplearning.ai/the-batch/issue-210/
https://www.deeplearning.ai/the-batch/building-ai-systems-no-longer-requires-much-data/?ref=dl-staging-website.ghost.io
https://www.deeplearning.ai/short-courses/?ref=dl-staging-website.ghost.io
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The Fine Art of Prompt Engineering
Most teams will simply try to prompt an existing model to get what they want out of it. It's the fastest way to get an 
application up and running. The quality of the prompts, understanding of what you want, and asking for it correctly all go 
into the art and science of prompting. Many people are under the mistaken belief that prompting is easy and anyone can 
do it. At times, it is a challenge to get what you want from these models. You only need to look at the wide range of 
outputs from diffusion models like Midjourney and Stable Diffusion to see that some people are much stronger at 
prompting than others.



One of the key aspects of prompting is knowing what you want and how to ask for it. A great example comes from the AIIA 
itself, when we were building an app to . Initially, the prompts were written by our lead coder, but the 
resulting articles were stilted, stiff, and essay-like. The problem was one of domain knowledge. Our coder is not a 
professional writer who can sling words as easily as she can code. 



We rewrote the prompts with the help of a writer who knew what to ask for because of his domain knowledge about 
writing. He included things like making the writing colloquial and using contractions, as well as varying the paragraph 
sizes so that they don’t resemble a college essay with big blocks of text, which makes the eye tired and makes the reader 
drift off. 



These prompts delivered much better writing, which was easier to massage into a workable newsletter, whereas the 
original prompts would have delivered a baseline that required extensive rewriting.



There are two variants of basic prompting:

write our newsletter

Zero-shot prompting (aka basic prompting)

Few-shot prompting

Large-scale language models, such as GPT-4, have the ability to achieve zero-shot learning. It sounds fancier than it is, 
but it basically means that the model is smart enough to understand examples or tasks beyond its original training so that 
you don’t need to do anything special to make it understand what you want or need. In essence, the model can 
understand examples that are not part of its training data. 



Zero-shot prompting means that you just give the model a descriptive prompt or context that provides guidance on the 
task.  It’s really nothing more than vanilla prompting.



To understand this concept better, let's break down the terminology:

Zero-shot: This term originates from the classification domain of machine learning. In zero-shot classification, a model is 
expected to correctly classify new, unseen classes without having been explicitly trained on them. The term “zero-shot” in 
the context of models like generative pretrained transformers (GPT) means that you're trying to get the model to perform 
a task it hasn't been directly fine-tuned on.

Prompting: This refers to the use of a carefully crafted input or series of inputs to guide a model into producing a desired 
output. In the context of language models like GPT, this often means providing a clear, descriptive sentence or paragraph 
that instructs the model on what is expected in its response.

When it comes to LLMs, zero-shot prompting can allow someone to present the model with tasks or questions without any 
prior fine tuning on that specific task, relying solely on the general pretrained knowledge of the model and the guiding 
influence of the prompt.



For instance, if you want to use GPT-3 for a math problem it is not specifically trained on, you might prompt it with a clear 
statement like “Solve the following algebraic equation...” and provide the equation. Even though GPT-3 is not specifically 
tuned for this math problem, its vast training data and understanding of language and context enable it to attempt the 
problem based on the given prompt.

https://github.com/ai-infrastructure-alliance/newsletter-agent
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In practice, achieving the desired results can sometimes require an iterative refinement of the prompts to better guide the 
model's outputs. This has led to research and techniques on effective prompting and few-shot learning, where a few 
examples are provided to help steer the model's behavior.



Now let's say that you want the model to do sentiment analysis, where the model labels text as positive, negative, or 
neutral. In traditional machine learning, you might take a recurrent neural net (RNN) and train it to take an input 
paragraph and classify its output. However, if you add a new class to the classification, such as asking the model not only 
to classify the outputs but also to summarize them, you'd need to retrain the model or you'd need a new model. In 
contrast, an LLM doesn't need retraining to do a new class of tasks. 



You could ask the model to classify the sentiment of a paragraph and summarize it. You could ask it to tell you whether 
the sentiment of the paragraph is positive or negative, because the LLM has learned the meaning of those words. 



Take this example from GPT-4:

We instructed GPT-4 with exactly what we wanted, leveraging its deep understanding of words like negative and positive, 
and got great results. We even gave it a challenging example that many classical models struggled to understand: “The 
player is on fire.”  That's a hard one to understand because if the model takes it to mean that the player is actually 
burning, then it's most definitely negative. Instead, the model recognizes the common sports idiom “the player is on 
fire,” meaning that the player is hot and doing extremely well, as positive.
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However, zero-shot prompting may fail as app designers run up against the limits of the model's pretrained capabilities.  
For example, a model may be able to do some basic reasoning consistently but fail badly at more complex and                
long-range reasoning.



To get better results, people may move up to few-shot prompting, where they provide a number of key examples to the 
model. It still relies on the model’s pretrained knowledge but guides the model to better understand what you want from it.



Few-shot prompting gives the model a few examples (or “shots”) of a task to guide its response for a new instance of that 
task. The idea is that, by seeing a small number of examples, the model can better understand and generalize the task       
at hand.



For instance, consider the task of converting a sentence from the present tense to the past tense. Here's an example of 
few-shot prompting with GPT:

Prompt:

Convert the following sentences from present tense to past tense:

“I play basketball.” -> “I played basketball.”

“She watches a movie.” -> “She watched a movie.”

“They swim quickly.” -> “They swam quickly.”

Convert: “He plays video games.”

Expected Response:

He played video games.



In the above example, the three provided conversions serve as the “few shots” to help the model understand the desired 
transformation. By seeing these examples, we expect the model to infer the right pattern and correctly transform the new 
sentence from present to past tense.



Few-shot prompting can be useful in situations where

A specific task or domain might not have been a large focus during the model's original training, so a few examples 
help nudge the model in the right direction.

You're unsure of how to phrase a prompt for best results in zero-shot mode. Providing examples can clarify the task 
for the model.

There are also a slew of more advanced prompting examples that continue to come to us from researchers trying different 
methodologies and putting out papers to teach them to others.  of some of these 
concepts, but more are coming out seemingly every week as more and more people figuring out how to get LLMs to reason 
much better.



We won’t detail them all here, but let’s look at a few examples, like Chain of Thought (CoT) prompting.

OpenGenus has a good breakdown

https://iq.opengenus.org/different-prompting-techniques/
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CoT prompting comes to us from Wei et al.’s (2022) paper, titled “
.” It delivers more complex reasoning capabilities through prompting via intermediate steps. This yields 

better results for more difficult tasks that require reasoning before spitting out an answer.

Chain-of-Thought Prompting Elicits Reasoning in Large 
Language Models

(Image Source: )Wei et al., 2022

In the CoT example, the logical steps to get to the answer are explained to the model (in the blue highlighted section on the 
right) so that it can follow that logic and then use similar logic to solve a similar type of problem better. 



Self-consistency from  aims to improve the reasoning of the CoT technique. The paper notes 
that it “replaces the greedy decoding strategy used in chain-of-thought prompting,” which is a convoluted way of saying 
that it basically prompts the model multiple times and then picks the answer that is most frequent—in essence, averaging 
out wrong answers. This seems to work better for math and common-sense reasoning.



The  site has a good example.

a paper by Wang et al. (2022)

Learn Prompting

(Source: )Learning Prompting

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.11171
https://learnprompting.org/docs/intermediate/self_consistency
https://learnprompting.org/docs/intermediate/self_consistency
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(Source: )Learning Prompting

Averaging out the wrong answer (NOT IMPORTANT) produces more consistent results. Unfortunately, it also slows down 
the response time and creates more round-trip time to cloud-based models and more cost to the developer, so we hope 
that such techniques won’t be necessary in more advanced models in the coming years.



Some more advanced models are detailed in the  by AIIA COO Mariya Davydova. We’ve reproduced 
portions of her analysis here, with her permission, but you are encouraged to read the entire blog for more detailed 
information and a wider range of examples. Let's have a closer look at them here.

Centaur Life blog

Multi-Model Approaches

Some teams have replaced a single LLM with multiple models or LLMs, so that they can reason together or share 
information. These techniques are promising, but of course, raise the cost and round-trip time for the developers once 
more, so you need a strong reason to pursue these approaches.



The first approach uses multiple agents to work together on a complex problem. A number of papers have detailed 
this approach:

Improving Factuality and Reasoning in Language Models through Multiagent Debate

LM vs LM: Detecting Factual Errors via Cross-Examination

DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents

The basic idea is to get multiple LLMs into a dialogue to overcome the shortcomings of reasoning or giving truthful or 
fact-based answers in one of them.

https://learnprompting.org/docs/intermediate/self_consistency
https://centaurlife.substack.com/p/beyond-the-basics-advanced-prompting
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.13281
https://arxiv.org/abs/2303.17071
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The most straightforward technique to grasp is the multi-agent debate (MAD) from the  paper. The 
idea is as follows: get two or more equivalent agents to address the same question, exchange information, and polish their 
answers based on the insights from their peers. Each round has all agents' answers shared among themselves, nudging 
them to revise their prior responses until they eventually hit a consensus. So, essentially, each agent puts in the same 
effort here.

Liang et al. (2023)

(Source: )Improving Factuality and Reasoning in Language Models through Multiagent Debate

https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
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Another approach uses the cross-examination technique ; we have two types of 
LLMs: the examiner and the examinee. The examinee poses a question, and the examiner follows up with additional 
questions, eventually deciding if the examinee's response is correct.

from the Cohen et al. (2023) paper

(Source: )LM vs LM: Detecting Factual Errors via Cross Examination

https://arxiv.org/abs/2305.13281
https://arxiv.org/abs/2305.13281
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From Prompting to Tuning
If the model isn't delivering the kinds of results you want, you may need to move to more advanced techniques, such as fine 
tuning a model. The base model may have a tremendous range of capabilities, but fine tuning the model on a finely curated 
dataset that provides a wealth of new examples can dramatically improve the model's performance on a specific task. 



 is a repository of fine-tuned models for the open source Stable Diffusion model family. The  model is fine-
tuned on images of Legos, and it does remarkably better at creating good Lego models versus the baseline Stable Diffusion 
1.5 model. It allows people to output complex Lego designs, whereas the base model struggles with those designs.



Fine tuning can apply to any kind of base model. For LLMs, we might want to train the model to write in a specific style, so 
we create or curate a dataset that fits that style to teach the model to better emulate it. We might want to build stronger 
medical or legal knowledge in a model, and so we train it on a well-designed dataset of the specific examples we're 
interested in to get much stronger results in that domain.

Civitai LegoAI

Then there's the dialog-enabled resolving agents (DERA) approach, from  where we distribute slightly 
different roles. In this case, we have a decider LLM, whose mission is to complete the task (in this medically oriented paper, 
it is making a diagnosis based on patient data), and a researcher LLM, which debates with the decider LLM to tweak the 
solution. Their dialog resembles less of an exam and more of a thoughtful exchange between two professionals.

Nair et al. (2023),

(Source: )DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents

What's so appealing about the multi-agent method is that it’s easy to program and highly adaptable to domain-specific 
applications. The last paper uses it for medical advice, but we could easily see these agents engaging in spirited 
discussions on a host of subjects, from legal cases and historical contexts to marketing studies and system architecture.



At the AIIA, we encourage teams to start simply and only move to more advanced techniques if their application requires 
it. It’s also essential that teams take into consideration the round-trip time and costs for hosting a model or token-based 
pricing. A multi-model approach, or an approach that averages response, can really drive up the response time and 
token-based costs. If your team is hosting a model that you created yourself or an open source foundation model, then 
you may have a fixed cost, and it might then be worth maximizing this fixed cost by using the multi-model or multi-
prompt approach. 

https://civitai.com/
https://civitai.com/models/95236/legoai
https://arxiv.org/abs/2303.17071
https://arxiv.org/abs/2303.17071
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Fine tuning requires significantly more skills and time. There is an art to fine tuning. Go too far, and you can kill the original 
model or cause it to overfit your specific examples. It may require many iterations of labeling data, curating examples, and 
training and testing a model before you start to get results that can be generalized to the real world.



There are numerous approaches to fine tuning a model, as detailed in this blog by :Label Studio

Transfer Learning - Transfer learning is a widely used methodology in fine-tuning, where the knowledge gained from one 
task is utilized to solve a different but related task. This approach reduces the need for extensive data and computational 
power, as the model can leverage the pre-existing understanding of language and patterns. Transfer learning is 
particularly effective when the new task shares similarities with the task the model was initially trained on, allowing for 
efficient adaptation and improved performance.

Sequential Fine-Tuning - Sequential fine-tuning involves training a model on multiple related tasks one after the other. 
This approach enables the model to understand nuanced language patterns across various tasks, enhancing performance 
and adaptability. Sequential fine-tuning is advantageous when there are multiple related tasks that the model needs to 
learn, as it allows for accumulating knowledge and fine-tuning specific aspects of language understanding.

Task-Specific Fine-Tuning - Task-specific fine-tuning aims at adapting the pre-trained model to excel at a particular task. 
Although this approach requires more data and time, it can lead to high performance on the task. Task-specific fine-tuning 
focuses on optimizing the model's parameters and architecture to enhance its capabilities in a targeted manner. This 
methodology is particularly valuable when a specific task's performance is paramount.

Multi-Task Learning - Multi-task learning involves simultaneously training a model on multiple tasks. This approach 
improves generalization and performance by leveraging shared representations across different tasks. The model learns to 
capture common features and patterns, leading to a more comprehensive language understanding. Multi-task learning is 
most effective when the tasks are related, and the shared knowledge enhances the model's learning and adaptability.

Adapter Training - Adapter training is a methodology that enables fine-tuning a specific task without disrupting the 
original model's performance on other tasks. This approach involves training lightweight modules that can be integrated 
into the pre-trained model, allowing for targeted adjustments. Adapter training is a great option when the need to  
preserve the original performance of the pre-trained model is high, providing flexibility and efficiency in adapting to task-
specific requirements.

However, when it comes to AI-driven applications, teams tend to focus on a smaller subset of fine tuning methods that are 
geared toward LLMs in particular. These include three major branches of fine tuning:

Instruct Tuning

Alignment Tuning

Adapter Training, aka Parameter Efficient Fine Tuning

Let's take a look at each in detail.

Instruct Tuning

This is perhaps the most popular method of fine tuning a base LLM. It is often used right out of the gate to get the model to 
respond to questions in a more human-like way or to perform specific tasks much better. For instance, Meta released their 
Llama 2 model as both a  and an instruct-tuned “ ” version that makes it much better at holding 
conversations, answering questions, and the like. This approach has been widely applied to state-of-the-art LLMs, such as 

 and , and continues to gain traction with new providers.

base model chat

InstructGPT GPT-4

https://labelstud.io/blog/fine-tuning-large-language-models/
https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://gpt3demo.com/apps/instructgpt
https://openai.com/research/gpt-4
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The concept is simple in theory but challenging in practice because it requires gathering a number of high-quality 
examples. Model-tuning teams create or source a large dataset of example question-and-answer responses. 



A great example is the , which was authored by more than 5,000 Databricks employees 
between March and April 2023. It was based on the ideas from OpenAI and their  that outlined the method for 
creating the InstructGPT model that was trained on a dataset comprising 13,000 demonstrations of instruction-
following behavior.



They wanted to train the model to be better at Q&A, extracting information from Wikipedia, brainstorming, 
classification, and creative writing, among other things.  describing the project, they listed the following 
instructions for their employees:

Databrick's Dolly 15K dataset
paper

 On their blog

Open Q&A: For instance, ‘Why do people like comedy movies?’ or ‘What is the capital of France?’ In some cases, there’s not 
a correct answer, and in others, it requires drawing on knowledge of the world at large.

Closed Q&A: These are questions that can be answered using only the information contained in a passage of reference 
text. For instance, given a paragraph from Wikipedia on the atom, one might ask, ‘What is the ratio between protons and 
neutrons in the nucleus?’

Extract information from Wikipedia: Here an annotator would copy a paragraph from Wikipedia and extract entities or 
other factual information such as weights or measurements from the passage.

Summarize information from Wikipedia: For this, annotators provided a passage from Wikipedia and were asked to distill 
it into a short summary.

Brainstorming: This task asked for open-ended ideation and an associated list of possible options. For instance, ‘What are 
some fun activities I can do with my friends this weekend?’

Classification: For this task, annotators were asked to make judgments about class membership (e.g. are the items in a   
list animals, minerals or vegetables) or to judge the properties of a short passage of text, such as the sentiment of a    
movie review.

Creative writing: This task would include things like writing a poem or a love letter.

They created a series of examples, such as the following:

Example of Open QA in Databricks-dolly-15k

How do I build a campfire?

Safety should always come first when starting a campfire. Ensure you have water or another way to extinguish your fire readily 
available. Use a campfire ring or pit, or clear a large area around your campfire location. Also, make sure campfires are permitted 
in your area.



With safety out of the way, all a fire needs are heat, fuel, and oxygen. Any combustible material will start a fire, but good campfire 
fuel sources include tinder, kindling, and dry logs.

Use stuff like dry pine needles, dry leaves, grasses, and wood shavings for tinder. You could also use newspaper (or any paper), 
dryer lint, or cardboard. For kindling, use smaller pieces of wood, such as twigs and sticks no thicker than 1 inch in diameter (about 
the thickness of your thumb).



Dry or well-seasoned logs will ensure a good burn. Stack the wood in a way that guarantees oxygen can easily reach your flame. 
Many prefer a teepee or log cabin stacking design. Now, use a heat source to create a flame or spark and apply this to your tinder. 
Once the tinder combusts, it should light the kindling, and the kindling should eventually ignite your logs. If all goes well, you 
should now be enjoying your campfire.

https://huggingface.co/datasets/databricks/databricks-dolly-15k/blob/main/databricks-dolly-15k.jsonl
https://arxiv.org/pdf/2203.02155.pdf
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
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Example of Brainstorming in Databricks-dolly-15k

Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? 
Give five ideas.



Instead of jelly, try one of the following with peanut butter in a sandwich:



1. Honey

2. Raisins

3. Fruit preserves

4. Bananas

5. Sliced apples

Instruction tuning enhances or unlocks latent capabilities in LLMs in a specific domain or area or with a specific task. This is 
now common for LLMs immediately after training the base model, and teams will usually release an instruct-tuned model 
alongside a base model, as we saw with Meta's Llama 2, which includes a base model and an instruct-tuned version.

Alignment Tuning

Alignment tuning is a kind of reinforcement learning, specifically  (RLHF). 
LLMs show tremendous capabilities across a wide and diverse set of tasks. But typically, these models are not aligned to 
their creator's preferences. An LLM generally doesn't align to any human preferences because of the way it's trained. 
Today's LLMs involve a pretraining step, where the model is fed large corpuses of text and then taught to do word prediction 
without any consideration of human values or preferences. The model may exhibit undesirable behaviors like giving false 
information, making wrong observations, or creating dangerous answers, such as detailing how to make a pipe bomb or 
methamphetamines. 



Alignment attempts to fix this by fine tuning the model to be more , to use the words of the 
alignment-focused company Anthropic. 



This kind of tuning may prove essential for large enterprises who can face lawsuits, public blowback, and real-world 
problems such as monetary losses when their models misbehave. If your LLM is advising kids to commit suicide, then you 
could have a major lawsuit on your hands. That’s where alignment tuning comes into the picture.

reinforcement learning through human feedback

helpful, honest, and harmless

Essentially, this boils down to taking outputs 
from the model and having humans rate them 
along a set of criteria and then training the 
model with a reward function to tune its answers 
to be closer to those the human wants from it. 
Alignment tuning is particularly challenging and 
generally outside the range of most teams that 
don't have a very strong data science team with 
experience in RLHF. In particular, alignment 
tuning may end up hurting the overall ability of 
the LLM, which is often called the “alignment 
tax.” That's when the model may refuse to give 
an answer for something it considers negative 
when it's actually essential for the task at hand. 



In this example from , the Llama 2 
model's chat version, which is both instruct-and 
alignment-tuned, refuses to answer how to kill a 
Linux process because it doesn't understand 
that kill is the correct terminology in the world 
of command line Linux to stop a malfunctioning 
process. Instead, the model assumes that the 
user wants to hurt someone or something and 
refuses to answer.

Reddit

https://openai.com/research/learning-from-human-preferences
https://arxiv.org/abs/2204.05862
https://www.reddit.com/r/LocalLLaMA/comments/15442iy/totally_useless_llama_70b_refuses_to_kill_a/
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RLHF is notoriously tricky to get right. It combines reinforcement learning with human feedback. The goal is to train agents 
who not only optimize a given reward function but also behave in a way that aligns with human values or intentions.



Traditional RL involves an agent who interacts with an environment and learns to take actions that maximize a cumulative 
reward over time. The agent starts with little or no knowledge about the environment and learns through trial and error. The 
environment gives the agent rewards (or penalties) based on the actions it takes, and the agent uses this feedback to adjust 
its behavior.



The problem with traditional RL is that specifying the reward function can be very challenging. Small oversights can lead to 
unwanted behaviors. For instance, if a robotic vacuum cleaner is rewarded only for picking up dirt and not penalized for 
knocking things over, it might be overly aggressive in its cleaning and break items in its path.



RLHF looks to address these limitations by incorporating human preferences into the mix. This is done in a number of ways, 
such as

Demonstrations: A human demonstrates the correct behavior, and the agent learns from observing these demonstrations.

Comparisons: Given two or more trajectories (sequences of actions), a human can rank or compare them based on        
their desirability.

Corrective Feedback: While an agent is acting or after it has acted, a human can provide feedback by telling the agent 
what it did right or wrong.

Typically, human feedback is used to create a reward model. The agent then optimizes its behavior based on this model. 
There can be several iterations of this process: the agent acts based on the current reward model, receives more feedback, 
updates the model, and so on.

Dataset Examples:

Atari Games with Human Feedback: Traditional RL has been applied to Atari games. Researchers can use human 
feedback by having humans rank different game trajectories or provide corrective feedback during gameplay.

Dexterous Manipulation Datasets: Tasks that involve manipulating objects with robotic hands are notoriously difficult. 
Human demonstrations or feedback can help train agents to perform these tasks with more finesse.

Autonomous Driving Datasets: While many of these datasets focus on supervised learning, they can be adapted for RLHF. 
Human drivers can provide demonstrations of correct driving or feedback on simulated driving trajectories.

When it comes to fine tuning LLMs, model tuners typically use comparison-based feedback to fine tune models like 
ChatGPT. Here, different model responses are ranked by humans based on their appropriateness.



There are essentially four core steps to RLHF:

Pretraining the model

Gathering data and labeling them

Training the reward model

Fine tuning the LM
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As noted here, most teams are not going to do the first step themselves. They will take an existing base model or foundation 
model and tune it to their needs. Training advanced LLMs from scratch is incredibly challenging and expensive, from a 
people, compute and time perspective. That's why most teams will start from the second step, gathering the data, typically 
as output from the LLM itself. Alternatively, they will pull from an existing RHLF dataset, such as 

 that they can use in their  approach. This is then used for the next 
step, which is training a reward model.



The underlying goal of creating the reward model is to train a model to take a sequence of text and then return a scalar 
reward that numerically represents the human preference. The output of the scalar reward is crucial for the current state-of-
the-art RLHF processes. The style of the reward model varies. It could be another fine-tuned LM or an LM trained             
from scratch.



The training dataset of prompt generation pairs for the reward model comes from sampling a set of prompts from the 
dataset the team collected or downloaded. The prompts are fed to the language model to generate new text. Human 
annotators then rank the generated text outputs from the LM.



You might think that you could have humans just assign a scalar reward score to each piece of text directly, but it doesn't 
work in practice, as each person brings different values and judgments to the task. The differing values of human labelers 
end up causing the scores to be all over the place and noisy. Instead, the rankings are used to compare the output of 
multiple models, which creates a much more regularized dataset.



There are a number of ways to rank the outputs. A popular method that's worked well to fine tune models is to compare the 
output from two different models on the same prompt. By comparing the outputs in head-to-head matchup, it becomes a 
simpler, binary choice of this one or that one for the human scorer. An  system can be used to generate a ranking of the 
models and outputs in relation to each other.



In general, training a reward model can be as challenging and cost-sensitive as training an LLM from scratch, so most teams 
will not do this unless they are a large enterprise with significant penalties for harmful output to their business and bottom 
line or to real-world safety. The successful reward models to date are all very large, with Anthropic using models as big as 
52B parameters and DeepMind using a variant of the 70B Chinchilla model as both the LLM and the reward model. The 
most likely reason for these big models is that the reward model needs to have as good a grasp of the text as the LLM itself 
to effectively evaluate whether the output meets the preferences. It's likely that many of the reward models at the large 
proprietary LLM foundation model providers, such as OpenAI, Anthropic, Cohere, and Inflection, are using some variant of 
their most advanced model trained to be a reward model.



We are starting to see the beginning of alignment-focused companies and platforms right now.  recently moved into 
rapid alignment for models, and we expect to see more. We need an order of magnitude speed-up in alignment tuning. For 
instance, we’ll need models rapidly tuned to get rid of undesirable behavior, and the process can’t take days or weeks or 
months as it does now.



At the AIIA, we see a process developing over the next few years, where alignment tuning is almost entirely automated and 
then completely automated. Imagine a model that advises a young person to commit suicide. This is harmful behavior that 
we want to be tuned out of the model. One way is to build in external middleware safeguards but better to have the model 
aligned to what we want, so we don’t need to anticipate every possible challenging question we don’t want the               
model answering.  



A rapid fine tuner might allow a bug fix team to ask the model itself for synthetic data or generate the synthetic data with 
dedicated platforms like . For instance, imagine again that the model told the young person why it’s a good idea to 
commit suicide. In this case, the tuning platform would ask the opposite question of the model: “why is it never a good idea 
to commit suicide?” Then, they would check the response and pair it with the original questions and have a fine tuning 
platform rapidly iterate on variations of both the question and answers, generating thousands of more variants. A small 
percentage of the variants would get surfaces to a human in the loop tester to check for accuracy, clarity, and correctness, 
and then the fine tuner would go to work in the background, producing a new model or adaptor (detailed in the                  
next section).



While we've looked at two very specific types of fine tuning, let's look at a tuning method that's much broader and more 
about efficiency versus a specific kind of output in the way that alignment tuning is specific to aligning to                       
human preferences.

Anthropic's RLHF dataset, 
for building helpful and harmless models constitutional AI

Elo

Kognic

YData

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://arxiv.org/abs/2212.08073
https://en.wikipedia.org/wiki/Elo_rating_system
https://www.kognic.com/
https://ydata.ai/
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Adapters and Parameter Efficient Fine Tuning

Fine tuning large pretrained models is an effective transfer learning method for natural language processing (NLP) tasks, 
but as you begin to add new downstream tasks, you may start destroying the original model because you are adjusting its 
weights. This is known as . In essence, the model forgets what it previously understood as it learns 
new information because its neural network is adjusted away from the original weights toward a new configuration. A small 
amount of fine tuning is only moderately destructive for the original model, but as we continue to train the model, it can 
cause the model to collapse and its performance to suffer on tasks it was originally good at before the fine tuning process.



Fine tuning is also tremendously inefficient, as it requires loading up the entire model and making changes across all its 
weights with new training. As an alternative, researchers have started developing more efficient fine tuning methods that 
freeze most or all of the weights of the original model and attach an adapter with an additional set of weights that modifies 
the output of the original model. The paper titled outlined the methodology 
in 2019.



Since then, we've had a wealth of new parameter efficient adapter methods, such as low-rank adaptation of large language 
models  and , which have been adapted by open source and proprietary research teams alike. They’ve also 
been adapted beyond LLMs to diffusion models like Stable Diffusion.  



Adapter modules are compact and extensible. They only add a few trainable parameters per task, and new tasks can be 
added without destroying proficiency in early tasks. Since the parameters of the original neural net remain fixed, adapters 
yield a high degree of parameter sharing. In addition, adapters can be stacked or swapped, and they are much more 
memory efficient than loading up another copy of the entire model, since they contain only a smaller subset of parameters.



Full fine tuning is incredibly expensive, especially if you have lots of different tasks that you want the model to be good at 
doing. Adaptor fine-tuned models are the same size as the original model plus the additional size of the adaptor versus a 
fully fine-tuned model, which might be much larger than the original model. The term  
was popularized by Hugging Face and has gained traction as the common method of referring to adapter-based approaches 
to fine tuning. PEFT, aka an adapter-based approach, only trains a small number of additional model parameters, while 
freezing most or all of the original LLM parameters. This effectively overcomes the issue of catastrophic forgetting, in which 
a model trained on a new task begins to forget how to do its original tasks. For instance, a model trained to recognize dogs 
is over-fine-tuned on cats and begins to misidentify dogs.



PEFT/Adapters can be applied to various models, not just LLMs, and they've been readily adapted by community 
programmers and researchers, particularly in the Stable Diffusion community, for diffusion models. It's much easier to have 
a 200MB  adapter than a fully fine-tuned 8 GB base model.



Most teams are better off training an adapter for an existing model, if they can, versus fine tuning the entire model. 
Unfortunately, this generally only applies to open source models, as teams need access to the model weights in order to 
create an adapter. If you are fine tuning a commercial model such as GPT-4, you are restricted to 

one of their models, and the magic of how they do it exists behind the curtain. They also charge extra for using a 
fine-tuned version of the model versus running the base model, as much as 3× per token, as of the time of this writing, 
although some providers allow fine-tuned versions to run for the same token pricing.



Adapters can be applied for just about any use case, such as adding medical or legal knowledge to an existing LLM, getting 
it to create a specific art style with something like Stable Diffusion, or with teaching it a brand new task, such as classifying 
a new kind of hate speech that you want to filter on your corporate forums.



As we noted earlier, there are a number of platforms for doing fine tuning. You have traditional MLOps-based platforms, 
which can be easily adopted to training a base model that you have complete access to, such as Llama 2. These are 
platforms like , ,  (purchased by ),  (purchased by HPE), , and 

, along with the big cloud MLOps stacks like Amazon’s  suite, Google’s , and Microsoft’s 
running fine tuning pipelines, as well as newer companies like , , , 

, and , which specialize in fine tuning LLMs. We expect more and more companies to offer 
foundation models that can be easily fine-tuned and the process to become much more automated and swift.



In addition, your team will likely need the help of labeling platforms like  , , (for multi-modal 
image data),  (which uses Label Studio Enterprise), , , , and especially companies that 
specialize in RHLF work, like .

catastrophic forgetting

Parameter Efficient Transfer Learning for NLP 

(LoRA) QLoRA

parameter efficient fine tuning (PEFT)

 LoRA

OpenAI's platform for fine 
tuning 

ClearML HPE’s Ezmeral MosaicML Databricks Pachyderm Anyscale
Weights and Biases SageMaker Vertex
Azure Machine Learning Lamini Humanloop Entry Point
Scale’s LLM fine tuner Argilla

 V7, Scale Label Studio Superb AI 
Human Signal Toloka Enlabeler Snorkel

Surge AI

Up Next: Agent Frameworks

https://en.wikipedia.org/wiki/Catastrophic_interference
https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2305.14314
https://huggingface.co/blog/peft
https://github.com/microsoft/LoRA
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://clear.ml/
https://www.hpe.com/us/en/solutions/ezmeral-machine-learning-operations.html
https://www.mosaicml.com/
https://www.databricks.com/
https://www.pachyderm.com/
https://www.anyscale.com/
https://wandb.ai/site
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai/
https://azure.microsoft.com/en-us/products/machine-learning
https://www.lamini.ai/
https://humanloop.com/
https://www.entrypointai.com/
https://scale.com/custom-llms
https://argilla.io/blog/argilla-for-llms/
https://www.v7labs.com/
https://scale.com/
https://labelstud.io/
https://superb-ai.com/
https://humansignal.com/fine-tuning-models/
https://toloka.ai/
https://enlabeler.com
https://snorkel.ai/
https://www.surgehq.ai/
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Agent 
Frameworks

Though this paper has laid out a number of 
major components for building successful AI-
driven applications and agents, the vast 
majority of the work falls to four different parts 
of the stack, which we call the “big four”:

LLMs, which act as the brains of the app

The code, which augments the LLM and connects it to the real world

Databases, which act as the memory and knowledge repository of the model

Other models, which provide additional capabilities to the LLMs and the code

Our thesis is that, over time, some of the other parts of the stack, like middleware and security tooling, will become more 
important as these apps mature, but for now, the big four are what are driving AI-driven applications like , which can do 
localization in 60 languages in the voice of the original content creator, and , which can do research on any topic and 
provide a detailed report. 



In addition, we expect the testing software to become much more important. With traditional software, it’s easy to write unit 
tests and regression tests to ensure that new features or bug fixes don’t break the software in unexpected ways. This is 
currently challenging with agents and AI-driven applications because it often involves a human being looking at the results 
and deciding if it's any good, which is just not scalable.



Today, the vast majority of production-grade application developers that we've spoken to are using their own custom 
written code and frameworks as opposed to one of the major agent frameworks that currently exist, such as , 

, , and . While these frameworks have a tremendous following for new developers in 
the space and when people are in the prototyping phase, we've discovered that many sophisticated teams end up writing 
their own frameworks that are specific to their applications as they get further along.

Rask
Aomni

LangChain
Haystack Semantic Kernel LlamaIndex

https://www.rask.ai/
https://www.aomni.com/
https://www.aomni.com/
https://www.langchain.com/
https://haystack.deepset.ai/
https://github.com/microsoft/semantic-kernel
https://www.llamaindex.ai/
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That's not as much of a surprise as it seems. Agents, generative AI, and AI-driven applications are still incredibly new. 
Developers and designers are simply figuring out how to build them effectively. At the AIIA, we believe that modularity 
and true abstraction will be the key to whoever wins in the long run and becomes the default way to write the code that 
powers the agents of tomorrow. This tracks with developers we've connected with in the community and with public posts 
on places like Reddit, . with people talking through their experiences

“My workflow primarily involved querying text from Pinecone 
and then using either models on Hugging Face or Lllama.cpp 
versions of the models. I had metadata stored along with the 
embeddings in Pinecone and wanted to filter based on that.



As the number of filters and conditions increased, it just 
became very cumbersome to be able to manage the text 

retrieval using Pinecone. Eventually, I rewrote the entire code 
without the LLM chains by breaking up the code into Query/

Retriever Classes, Prompt Creator functions and Text 
Generation Classes. This way, the code was modular. The 

prompts and text generation performance could be checked 
without modifying the complete chain and passing all the 

metadata filters every time.”

They are very different kinds of applications than traditional deterministic applications. It will take time for the best design 
patterns, abstractions, and solutions to present themselves. This is typical of any early ecosystem. It took ten years for the 
industry to get to the ideal way to manage containers, with many solutions vying for supremacy, and along the way, 
Google developer Borg, then Omega, and finally Kubernetes building on what they learned along the way.



Over time, these frameworks will mature and get better at delivering the right abstractions to developers, saving them 
time and energy, but at this point, it is way too early to call it a winner. In addition, many of these frameworks have shown 
good enough traction to attract venture money, so expect their code bases to evolve rapidly in the coming years.



For now, let's look at each of the most well-known frameworks briefly in turn, with the understanding that we won't be able 
to cover them comprehensively here but that we will outline their basic baseline capabilities.

LangChain
LangChain is currently one of the most popular frameworks. The team behind it recently raised a  
and another .



, originally developed by Harrison Chase, is a Python and JavaScript library for interacting with OpenAI's GPT 
APIs, and the framework was later extended to include more models. The idea for LangChain came from the paper 

 written by researchers at DeepMind, Google Brain et al., which is 
generally called the ReAct paper. The paper showcases a prompting technique that lets the model do better reasoning 
and then take better actions by using predefined sets of tools, such as searching the internet. The one-two punch of 
reasoning and action has turned into a popular workflow that often improves the output and lets LLMs solve problems 
more effectively.

 $10 million seed round
$20–$25 million at a $200 million valuation Series A

LangChain
ReAct: 

Synergizing Reasoning and Acting in Language Models

https://www.reddit.com/r/MachineLearning/comments/14zlaz6/comment/js2arum/?utm_source=share&utm_medium=web2x&context=3
https://blog.langchain.dev/announcing-our-10m-seed-round-led-by-benchmark/
https://www.businessinsider.com/sequoia-leads-funding-round-generative-artificial-intelligence-startup-langchain-2023-4
https://www.langchain.com/
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
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(Source: )ReAct paper

The ReAct workflow was effective for the InstructGPT/text-davinci-003 model, aka GPT-3, but it hasn't proven as effective 
or necessary for GPT-4. Time will tell if the surge of funding helps the ecosystem develop in a smart and balanced 
approach that is of real value to agents and smart app developers. For now, the LangChain community is massive, and the 
network effect can often steer a project to greatness if it's able to attract sound developers who are experts in abstraction.



At its core, LangChain allows developers to create a “chained” application, a sequence of calls to components, which can 
include other chains.



LangChain continues to develop and may change tremendously over the next few years now that they have extensive 
backing and funding, but the basic components as they stand today are as follows:

Model I/O = The primary interface with language models for input/output

Indexes = The interface for retrieving application-specific data like PDFs, web pages, databases and more

Chains = Allows developers to construct a sequence of hard-coded calls to external tools and LLMs

Agents = Gives the LLM more autonomy to choose the best way to accomplish a high-level objective, like using an 
API, as opposed to hard coding the chain

Memory = Allows the developer to keep the application state between chain runs

Callbacks = Log and stream intermediate steps of any chain

https://arxiv.org/abs/2210.03629
https://docs.langchain.com/docs/components/models/
https://docs.langchain.com/docs/components/indexing/
https://docs.langchain.com/docs/components/chains/
https://docs.langchain.com/docs/components/agents/
https://docs.langchain.com/docs/components/memory/


31Agents, Large Language Models, and Smart Apps

LangChain was one of the first to embrace agent-style approaches to building models, meaning that the LLM does much 
of the logic and planning or it figures out the right sequences of events when interacting with an API. Now most 
frameworks are pivoting toward that rapidly. Semantic Kernel from Microsoft already has these capabilities, and the team 
is leaning into it more and more. The main idea of agents versus chains is that instead of the programmer picking the 
sequence of actions, the LLM chooses the sequence of actions. In chains, a sequence of actions is hard-coded (in code). In 
agents, a language model is used as a reasoning engine to determine which actions to take and in which order.



The agent component continues to evolve beyond the original ReAct concepts. This is basically a prompting strategy at 
this point and can include the following:

The personality of the agent (useful for having it respond in a certain way)

Background context for the agent (useful for giving it more context on the types of tasks it's being asked to do)

Prompting strategies to invoke better reasoning (the most famous/widely used being )ReAct

LlamaIndex
LlamaIndex is another popular framework that developers have experimented with or woven into their projects. 
LlamaIndex is more firmly focused on acting as a “data framework” to help you build LLM apps.

Its GitHub  summarizes it nicely:Readme

Offers data connectors to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.)

Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs

Provides an advanced retrieval/query interface over your data: Feed in any LLM input prompt, get back retrieved 
context and knowledge-augmented output

Allows easy integrations with your outer application framework (e.g., with LangChain, Flask, Docker, ChatGPT,          
anything else).

Haystack
Haystack has been around for a bit longer than the others, and it has mostly specialized in extractive QA, as noted by 

. Much of the early development went into question answering and retrieval, whereas LangChain went 
more into agents and put their energy there early on. Haystack’s focus was originally on making the best use of local 
transformer models for app builders. It allows people to build elaborate NLP pipelines for summarization, document 
similarity, semantic search, etc. They've also recently added more agentic capabilities, allowing the agent to use prompt-
defined controls to find the best underlying pipeline or tool for the task.

one 
of the developers

https://arxiv.org/abs/2210.03629
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index/blob/main/README.md
https://www.reddit.com/r/MachineLearning/comments/14zlaz6/comment/js8das8/?utm_source=share&utm_medium=web2x&context=3
https://www.reddit.com/r/MachineLearning/comments/14zlaz6/comment/js8das8/?utm_source=share&utm_medium=web2x&context=3
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Currently, Haystack supports the following, per :its documentation

Effortless deployment of models from Hugging Face or other providers into your NLP pipeline

Create dynamic templates for LLM prompting

Cleaning and preprocessing functions for various formats and sources

Seamless integrations with your preferred document store (including many popular vector databases like Faiss, 
Pinecone, Qdrant, or Weaviate): keep your NLP-driven apps up-to-date with Haystack’s indexing pipelines that help 
you prepare and maintain your data

The  for a faster and more structured annotation processfree annotation tool

Tooling for fine tuning a pretrained language model

Specialized  that use different metrics to evaluate the entire system or its individual componentsevaluation pipelines

Haystack’s REST API to deploy your final system so that you can query it with a user-facing interface

Semantic Kernel
Semantic Kernel OpenAI
Azure OpenAI Hugging Face

plugins few lines of code

planners

 (SK), developed by a team at Microsoft, is “a lightweight SDK to enable integration of LLMs like , 
, and  with conventional programming languages like C#, Python, and Java. Semantic Kernel 

achieves this by allowing you to define  that can be chained together in just a .”



It has a tighter focus on reasoning and planning than the other frameworks discussed here. For instance, it has  
that can generate a plan to reach a goal and then execute that plan. Such advanced abstraction will likely become a 
cornerstone of all agent frameworks in the future, but currently it's Semantic Kernel that leans most heavily onto it now.



The main downside to it currently is uneven support across the three languages that the project supports, which you can 
see in this chart. In particular, the Python code is lacking at the moment, which is a shame, as that is the most commonly 
used language in machine learning and in agent development and smart apps.

(Source: )SK documentation

https://haystack.deepset.ai/overview/intro
https://docs.haystack.deepset.ai/docs/data_handling
https://docs.haystack.deepset.ai/docs/document_store
https://docs.haystack.deepset.ai/docs/annotation
https://docs.haystack.deepset.ai/docs/domain_adaptation
https://docs.haystack.deepset.ai/docs/evaluation
https://docs.haystack.deepset.ai/docs/rest_api
https://github.com/microsoft/semantic-kernel
https://platform.openai.com/docs/introduction
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://huggingface.co/
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/plugins
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/chaining-functions?tabs=Csharp#using-the-runasync-method-to-simplify-your-code
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/planner?tabs=Csharp
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/planner?tabs=Csharp
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SK supports , as well as function chaining, vectorized memory, and intelligent planning, though all of 
these are work in progress. 



One of the biggest goals of SK is to support design patterns from the latest AI research so that developers can                
infuse their apps with complex skills like recursive reasoning. They've also adopted the 

.



With native functions, you can have the kernel call C# or Python code directly so that you can manipulate data or perform 
other operations. In this way, native functions are like the hands of your AI app. They can be used to save data, retrieve data, 
and perform any other operation that you can do in code that is ill-suited for LLMs (e.g., performing calculations). The SK 
framework allows you to create two kinds of functions:

prompt templating

OpenAI plugin specification as their 
own standard

Semantic functions Native functions

Semantic functions allow your AI app to listen to users and responds back with a natural language. SK uses connectors to 
get those asks and responses back and forth to the LLM.

Native functions allow the kernel to call C# or Python code directly so that you can manipulate data or perform other 
operations. According to ...the documentation

“...in this way, native functions are a bit like the hands of your 
AI app. They can be used to save data, retrieve data, and 

perform any other operation that you can do in code that is 
ill-suited for LLMs (e.g., performing calculations).”

The planner is probably the most unique part of SK, and it will continue to receive considerable attention from the team, 
as they see it as the key to making their framework widely used and special.



The planner is a function that takes a user's ask and returns a plan to them on how it will accomplish the request. It allows 
the LLM to mix and match plugins that are registered to the kernel so that it can create a series of steps, much like 
LangChain’s agents’ function. It allows developers to create atomic functions that they might not have thought about yet. 
They use the following example:

“If you had task and calendar event plugins, planner could 
combine them to create workflows like 'remind me to buy 
milk when I go to the store' or 'remind me to call my mom 
tomorrow' without you explicitly having to write code for 

those scenarios.”

https://learn.microsoft.com/en-us/semantic-kernel/prompt-engineering/prompt-template-syntax
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/plugins?tabs=Csharp
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/plugins?tabs=Csharp
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/semantic-functions
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/native-functions
https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/plugins?tabs=Csharp
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The planner is extensible. This means that there are several planners to choose from, and there will likely be more over 
time as new papers and concepts on how to elicit the best reasoning from LLMs come to light. Developers can also write 
their own custom planner.



The documentation gives some examples of :how to use planners here

“Behind the scenes, a planner uses an LLM prompt to 
generate a plan. You can see the prompt that is used by 

Sequential Planner by navigating to the skprompt.txt file in 
the Semantic Kernel repository. You can also view the prompt 

used by the basic planner in Python.”

The Future of Frameworks
At the AIIA, we recommend that developers experiment with many different frameworks and not be afraid to go their own 
route at this stage in the ecosystem development but be prepared to potentially toss out homegrown solutions as the 
frameworks mature. 



It's important to realize that all of these frameworks are very new and they may disappear, change dramatically, or get 
overtaken by a completely new framework. None of them can be considered completely production-ready at the moment, 
though they are developing in that direction rapidly.



From talking extensively with developers and from an analysis of similar software technological developments in history, 
we see these frameworks as the most likely to evolve or be replaced in the coming years. Learning how best to abstract 
solutions to well-known problems in a space is a complex problem that happens over time. It takes many engineers to 
code over an extended period and learn from each other. As that happens, more and more accepted solutions and ways of 
dealing with similar problems solidify over time. 



These frameworks are primarily written in Python, but SK also supports C# and Java. We expect more languages to get 
better traction in the coming years, especially flexible modern languages like Rust, though, for now, the dominant tooling 
in such languages is fine tuning or at the moment.inference 

Up Next: Vector Databases

https://learn.microsoft.com/en-us/semantic-kernel/ai-orchestration/planner?tabs=Csharp
https://github.com/microsoft/semantic-kernel/blob/main/python/semantic_kernel/planning/basic_planner.py
https://github.com/rustformers/llm
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Vector 
Databases

One of the other big new tools in the arsenal 
of AI app designers is vector databases, a 
category that previously did not get much 
fanfare. That's probably because databases 
have been around since the early days of 
computing, and they're well-known 
foundations to many kinds of applications. 
But the familiarity and longevity of 
databases obscure the fact that they've 
evolved considerably over that time with the 
needs of new kinds of applications.

Today, databases are evolving once again to handle the needs of machine learning with vector databases.



Initially, databases were all about neat tables filled with rows and columns. They served the applications of the desktop and 
early enterprise era well and made tech titans out of companies like Oracle. With the rise of the cloud and big data came 
NoSQL databases like Cassandra or MongoDB with their JSON documents, which can scale better than traditional 
databases for certain kinds of workloads that started to crop up as hundreds of millions and then billions of people        
came online. 



Vector databases are one of the latest iterations of the database family. They store vector embeddings—the unique, critical 
data meant for AI and machine learning applications. Vector embeddings are simply numerical representations of data. They 
could be images or videos or the words/sentences used in NLP.



Some datasets are more structured and have columns of numeric values, and others might have more unstructured text like 
an entire legal document, a novel, or an article online. But any data can be converted down to a vector, whether it is a whole 
document or just a few words or the pixels in an image. Essentially, any other object can be reduced down to a vector easily. 
Even numerical data can be turned into vectors.



In the world of LLMs and agents, vector databases are the hidden workhorses. They make it possible to sort and store and 
search embeddings by semantic similarity, represented by their proximity in a vector space. That's a useful superpower 
when it comes to natural language queries. This means that a query doesn't need to be exact to be a match. 
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Traditional databases deliver exact matches to everything, such as finding me this record of John Nash who lives at 125 
Springfield Road and giving me his last orders. However, vector databases use similarity metrics to find any vectors that 
are close to the query. To do that, they use approximate nearest neighbor (ANN) search algorithms that are optimized 
for search, like product quantization, hierarchical navigable small world, or random projection. Basically, these 
algorithms compress the original vector, making the query process much faster. They can also do other kinds of 
similarity comparisons, such as Euclidean distance and dot product comparisons, which identify the most useful results. 



In a traditional database like Postgres, we're usually querying for rows where the values are exact matches for our query. 
In vector databases, the database backend applies those similarity metrics to find a vector that is the most similar to our 
query. Its various algorithms are put together into a pipeline that provides fast retrieval of the neighbors of a queried 
vector. Since the vector database provides approximate results, as opposed to exact results, the main trade-offs we face 
are total accuracy versus speed. If we need more accuracy, it can make the query slower, so there is always a tradeoff 
between accuracy and speed. However, a well-designed vector database can provide a very fast search with high-
quality accuracy.



How does this translate to the real world? All these similarity searches might let you easily find questions that are very 
similar to the question someone is asking, even though they used a different language to ask it. This means that the app 
designer can pull back prebaked responses rather than waiting for an answer from the cloud LLM's API and save on 
round-trip time and cost. These embeddings are like a compact snapshot of meaning and can function as a filter for new 
data during inference. If you're just pulling up answers in a database by exact match, that works fine if the range of 
questions is highly structured and limited, but when the range of questions can be virtually infinite, that falls apart fast. 



Vector databases can also be useful to store the kind of fuzzy knowledge that we're used to dealing with as human 
beings. Picture a pair coding LLM that understands the question you're asking and looks up similar code in previous 
answers, providing a shortcut to solving the same problem multiple times. 



Let's take a look at an example. One user might ask an LLM “What's the best way to restore hair as I age?” and another 
might ask “How do I get my hair back?” and yet another might ask “How can I stop losing my hair?” There are thousands 
of ways to ask the question, and a vector database understands the semantic similarity of these questions and can 
deliver an answer in a fraction of second.



It can also be useful for the long-term memory of the application. You can instruct the LLM to look up the answers it 
gave from the past or the state of the conversation so that it is not starting cold and can move forward with a sense       
of continuity.



Another good example comes from the blog of developer :Max Woolf, who wrote

“I was tasked with creating a ChatGPT-based chatbot for    
the Tasty brand (later released as Botatouille in the Tasty iOS 

app) that could chat with the user and provide relevant 
recipes. The source recipes are converted to embeddings 

and saved in a vector store: for example, if a user asked for 
‘healthy food’, the query is converted to an embedding, and 

an approximate nearest neighbor search is performed to find 
recipes similar to the embedded query and then fed to 

ChatGPT as added context that can then be displayed to the 
user. This approach is more commonly known as        

retrieval-augmented generation (RAG).”

—Max Woolf

https://minimaxir.com/2023/07/langchain-problem/
https://tasty.co
https://www.buzzfeed.com/buzzfeedpress/buzzfeeds-tasty-introduces-botatouille-the-first-of-its
https://arxiv.org/abs/2005.11401
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We can find an example of  in the LlamaIndex documentation. It’s basically a two stage process:a simple RAG

Indexing: Setting up the knowledge base and filling it with data

Querying: Retrieving knowledge from the database to help the LLM respond to a question or do a task

(Source: , CEO and Co-founder of LlamaIndex at the AIIA event, LLMs and the Generative AI revolution)Presentation by Jerry Liu

Retrieval augmentation might come from a vector database natively or it might come from a feature store, such as 
 or , to run a more complex query and ensure we have the latest information. For instance, a question to an 

LLM asking an Uber-like application “where is my driver” cannot come from a static answer. It needs a real-time update 
to that because the driver is moving. But a comprehensive overview of feature stores is beyond the scope of this 
document, and readers should turn to our  for more information.



Essentially, when it comes to LLMs, vector databases allow the model to understand the relationships between data 
better and keep a long memory. Context windows are notoriously short in LLMs. The longest are 100K tokens as of 
summer 2023, though there are some open source models with larger ones, and researchers are working on tricks to 
extend them. But even with these long context winds, researchers are discovering the limitation of current models to 
focus on the entire context and instead finding that they tend to focus on the beginning and end with a big drop off in 
the middle. The paper from researchers at Stanford, UC Berkeley, and Samaya AI, called , tells you just 
about everything you need to know about the limitations of current context windows in today's state-of-the-art models.



A hundred thousand tokens may sound like a lot, but they can quickly get exhausted as you load lots of documents, and 
a single document may not fit in that context window. It's a bit like the early days of computing where memory was 
absurdly scarce and programmers had to do a lot of tricks to swap things in and out of that limited memory. 



In a vector database, data are sorted and stored based on their geometric characteristics. Every item is identified by its 
coordinates in space and other attributes that define it. A  (GIS) application backed by a 
vector database might prove a better choice for keeping track of the numerous similarities among the grids of towns 
and the zig-zag lines of rivers, highways, backroads, and major landmarks, sorting them by clusters of similarity. That 
would let someone explore all the buildings that are close to each other or of a similar size or shape, something that's 
almost impossible in a traditional database if the information is not hard-coded in a cell.



Another example would be hunting through legal documents for paragraphs that contain similar but not exactly worded 
language about jurisdictions where an agreement might be litigated if it comes to a court conflict. This would let a law 
team find non-standard paragraphs that might affect where they have to fight a case, which can get very costly if those 
jurisdictions are spread out geographically and have to fight multiple legal battles at once as they fly between Los 
Angeles, New York, and London.

Fennel Feast

AI Infrastructure Ecosystem report from 2022

Lost in the Middle

Geographic Information System

https://gpt-index.readthedocs.io/en/latest/getting_started/concepts.html
https://community.ai-infrastructure.org/home/videos/jerry-liu-llamaindex-practical-data-considerations-for-building-production-ready-llm-applications-2023-09-14
https://fennel.ai/
https://github.com/feast-dev/feast
https://ai-infrastructure.org/ai-infrastructure-ecosystem-report-of-2022/
https://arxiv.org/abs/2307.03172
https://education.nationalgeographic.org/resource/geographic-information-system-gis/
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When it comes to agents and centaur applications, vector databases act as the long-term memory for the apps and as a 
way to load lots of data for searching and sorting later. If you want to load all the cases of a district court over the last 
year so that you can build a question answering bot, you'd struggle loading all the vectors into the memory with 
something like a CSV file processed via NumPy.



To deal with these massive chunks of data, an agent might fetch them all from a vector database or, if they're new, load 
them from a URL, an outside database, or a file system. Often, agent coders write their own document management 
abstractions, but they might also use something like  or  to do the job of ingesting the documents 
and breaking them down into manageable chunks to fit context windows. These chunks are split along the way, unless 
they're very small, to make sure that the LLMs can deal with them and their limited context window while taking 
advantage of similarity search.



In LangChain, you'd use  to load documents into memory and the  from 
the Document Transformer to break them down into useable chunks. This function splits the documents at the character 
level using a default chunk size of 1000 characters. It also includes a chunk overlap of 20 characters. The chunk overlap 
may seem strange at first, but it basically ensures that there are exact matches in the text over different chunks to 
ensure perfect continuity and to minimize the risk of losing meaning at the borders.



Putting data into a vector database typically follows the below pattern.

LangChain LlamaIndex

DirectoryLoader RecursiveCharacterTextSplitter

The data are broken down into manageable chunks

Then they are converted into vector embeddings

The database indexes the embeddings for rapid retrieval

When a user queries the database, it computes similarity metrics between the chunk vectors and returns matches

Vector databases then precompute certain common similarities between the vectors to further speed up the queries

An agent writer might build their own interface framework that speeds up or precomputes the kinds of similarities they 
expect to hit repeatedly with their applications. For instance, if the application is a generator of stock imagery, it might 
have a series of previously highly rated and successful prompts to draw on. The application might return some images 
based on the user's prompt or it might return images that closely fit that query already rather than generating them 
from scratch, which saves GPU time.



At the AIIA, we feel one of the main drivers of purpose-built vector databases (like Pinecone, Activeloop, ChromaDB, or 
Weaviate, versus layering vector capabilities into an existing database (like pgvector for Postgres or Atlas Vector search 
for MongoDB) will come down to the age-old questions of features, performance, ease of use, scalability, and security. 
Existing databases have a leg up in terms of scalability and security, having dealt with them for many years, but at this 
point in the evolution of vector-based applications, it's hard to tell if their legacy architecture will help or hinder them in 
adding vector capabilities. Will vector databases that are purpose-built for vectors hold the advantage over the long 
term, or will they be smarter and wiser to add vector capabilities to an existing stack so you can query traditional row-
based results and vectors in one place? Time will tell.



Either way, we expect that all vector databases that serve internet net scale agent applications or enterprises will need 
to have strong performance and fault tolerance capabilities. This is a well-known problem in space and not something 
we expect to get reinvented in the machine learning era.

https://python.langchain.com/docs/modules/data_connection/
https://gpt-index.readthedocs.io/en/stable/core_modules/data_modules/documents_and_nodes/root.html
https://python.langchain.com/docs/modules/data_connection/document_loaders/how_to/file_directory
https://python.langchain.com/docs/modules/data_connection/document_transformers/
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Instead, these companies are already leaning on tried and true solutions to making databases bigger and more resilient, 
most notably

Sharding, which means partitioning the data across multiple nodes. There are many methods for partitioning data that are 
being adapted to vector databases, such as partitioning by clusters of data that share similar patterns. This makes it rare 
for a query to need to talk to two different nodes, which can mean performance penalties in the query.

Replication, which means creating multiple copies of the data across different nodes so that the downtime in one node 
does not mean downtime for all that data. Even if a particular node fails, other nodes will be able to answer the query. 
Databases have two historical consistency models: strong consistency and eventual consistency. Eventual consistency 
allows for temporary inconsistencies in different copies of the data. This often means vastly improved availability and 
reduced latency, but it may also mean data conflicts or even data loss later if the conflicting changes can't be rectified. The 
second approach, strong consistency, means that all copies of the data have to be updated before the write operation is 
considered complete. This ensures that the data are always consistent, but it may ratchet up latency.

Pinecone Atlas

Cassandra

Postgres

 and  for Mongo use the eventual consistency approach and NoSQL-style databases like Cassandra.



In case of eventual consistency, the database adheres to the concept of quorum, where you can set the number of nodes 
that need to have the same data copied before replying with an answer. Higher quorum equals better consistency, while 
lower quorum equals better latency. A NoSQL database like  provides high write throughput with very          
low latency. 



Quorum consistency in Cassandra is usually because the majority of replica nodes (n/2 +1) must respond to a query. 
The quorum process checks for the majority of the replicas, giving the same answer. For instance, if the admin sets a 
replication factor of 3 across 2 datacenters, there will be 6 replicas, which means the majority is 4 in this case. 



Eventual consistency works well for log data, time-series data, analytics workloads, and many machine                  
learning workloads. 



On the other hand, traditional row-and column-based databases like Oracle, MySQL, and  provide very high 
consistency, so they're much better for workloads that demand tremendous accuracy, like payment transactions and 
banking data.



The kind of application an agent designer is developing will push them toward one or the other types of databases or 
multiple databases. An app that is designed for medical matters needs a much higher level of accuracy and consistency 
versus one that's answering questions and doing research about public companies.



The vector database world is evolving fast, but some of the current key players are as follows:

Pinecone: Pinecone is one of the top current players in the market due to its SaaS cloud-based approach, ease of getting 
started, and performance and scalability.

Pgvector on Postgres: Pgvector is an open source add-on to Postgres that continues to gain steam with developers we 
talked to, due to their familiarity with Postgres and the ability to do exact queries and vector queries in one place.

Activeloop is a unique take on the space in that it can function as both a data lake for everything from documents to video 
to images in its object store, while also acting as a vector store for embeddings and their metadata.

Weaviate comes as a SaaS service, as well as an installer for Docker containers for on-prem, in the cloud, or even as an 
embedded instance. It comes packed with a number of prebaked retrieval modules optimized for various use cases, like 
question and answering.

https://www.pinecone.io/
https://www.mongodb.com/docs/atlas/atlas-search/performance/index-performance/
https://cassandra.apache.org/_/index.html
https://www.postgresql.org/
https://www.pinecone.io/
https://github.com/pgvector/pgvector
https://www.activeloop.ai/
https://weaviate.io/
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MongoDB Atlas vector search's  is a public preview (at the time of this writing), and it comes via the MongoDB cloud 
offering. It allows for vector searches alongside traditional NoSQL workloads in a single, fully managed platform.

Vespa is another open source offering that offers stateless container front ends for processing data and queries that are 
backed by content clusters that provide eventual consistency.

DataStax offers a vector database that works inside Cassandra database or Astra database, which is a Cassandra-
compliant database that simplifies deployment in the cloud. Like similar offerings from Mongo, it looks to unify NoSQL and 
vector searches in one place.

Milvus is an open source offering created in 2019 to store, index, and manage massive embedding vectors for machine 
learning. It supports clustering on K8s with horizontal scaling.

FeatureBase is an in-memory, analytics and vector engine with SQL support, real-time updates and fast point-lookups for 
ML workloads.

Up Next: The LLMs Themselves

https://www.mongodb.com/atlas
https://www.mongodb.com/products/platform/atlas-vector-search
https://vespa.ai/
https://www.datastax.com/
https://milvus.io/
https://www.featurebase.com/
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The LLMs 
Themselves

Of course, the star of the AI-driven 
application space is an LLM, acting as the 
brain behind it all. LLMs fall into two major 
flavors: closed source proprietary models 
and open source models.

Let's start with the proprietary models. As of the writing of this report,  is currently the best and most 
performant LLM model. It's available via API. They recently released  with no usage limits, encryption 
in transit, a policy to not store or train on enterprise data, and more.



However, they are by no means the only LLMs in town.  has .  has . Google has , aka 
Palm 2, as well as a small suite of other models like an image generator and a coding model called  on their Vertex AI 
platform.  has Pi.  (one of the few European startups on the list due to Europe's often challenging 
regulatory and funding environment) has . More are coming. Inflection AI  to train the next version of Pi 
and  (the other European contender out of France), who raised 113M.



Competition in this space is fierce, and a number of companies are already building and releasing strong competitors or 
have racked up tremendous funding to build the next-generation models. Unfortunately, because of the increased 
competition, we often know less and less about the architecture, the training data, and everything else that matters about 
these models. This means that many of the teams out there working to build applications with these models have to go on 
gut instinct, personal feel, their own internal tests, and guesswork to figure out which of these models is the best choice for 
their projects.



The  outright says that it will tell you nothing about how it works. “Given both the competitive landscape and 
the safety implications of large-scale models like GPT-4, this report contains no further details about the architecture 
(including model size), hardware, training compute, dataset construction, training method, or similar.”



This is an unfortunate trend. Much of the early progress in machine learning came from the spirit of sharing and open 
collaboration. All of the models are certainly trained on open source software like  or . These use open source 
infrastructure like containers and Kubernetes. GPT-4 and every other model also undoubtedly benefited from open source 
software for training, open web crawls for data, as well as from seminal papers from Google and other teams like the famous 

 paper, which defines the Transformer architecture that powers most, if not all, of the most 
powerful LLMs today. It's also likely, if the leaks of GPT-4 architecture are true, that they benefited from various mixture of 
experts (MoE) papers, like Google's .

OpenAI's GPT-4
an enterprise version

Anthropic Claude Cohere Command Bard
Codey

Inflection Aleph Alpha
Luminous raised 1.3B

Mistral

GPT-4 paper

PyTorch JAX

Attention is All You Need

Sparsely Gated Mixture of Experts

https://openai.com/research/gpt-4
https://openai.com/blog/introducing-chatgpt-enterprise
https://www.anthropic.com/
https://www.anthropic.com/index/introducing-claude
https://cohere.com/
https://cohere.com/models/command?ref=txt.cohere.com
https://bard.google.com/
https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
https://inflection.ai/
https://www.aleph-alpha.com/
https://www.aleph-alpha.com/luminous
https://www.forbes.com/sites/alexkonrad/2023/06/29/inflection-ai-raises-1-billion-for-chatbot-pi/
https://techcrunch.com/2023/06/13/frances-mistral-ai-blows-in-with-a-113m-seed-round-at-a-260m-valuation-to-take-on-openai/?guccounter=1
https://cdn.openai.com/papers/gpt-4.pdf
https://pytorch.org/
https://github.com/google/jax
https://arxiv.org/abs/1706.03762
https://research.google/pubs/pub45929/
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Many of the writers of these papers have since left Google to start their own companies. Anthropic and Cohere were 
started by the co-authors of the project. At this point, each of the eight writers of the Attention is All You Need paper 
has moved on to start their own companies. Google's lineage is incredibly strong here as well, even beyond “Attention 
is All You Need.” , co-founder and CEO of Inflection, was the co-founder of DeepMind.



Strangely enough, you'd think that Google would have the most powerful models and dominate all the competition. 
They certainly produced some of the best research and were big creators of pioneering internal AI projects, like Google 
Translate and the various AI approaches that now dominate their search business. However, they suffered from an 
unwillingness to release models or expose them to the general public via API, believing them to be trade secrets. They 
also suffered from being one of the largest and most powerful companies in the world, which brought tremendous 
scrutiny from governments, so they moved cautiously to not draw fire from regulators. LLMs are known to have serious 
flaws despite their benefits, such as hallucinations, making up information, doubling down on wrong information, and 
generating toxic output. While a small team could get away with those kinds of outputs more easily, Google would have 
faced a nasty backlash and so choose to move more cautiously.



They also suffered from . They are the most dominant search engine and digital advertising 
business in the world, by a massive margin; AI holds the power to dramatically disrupt both of those businesses. 
Google has to worry about making sure that their AI continues to send people to web pages, which are the core of their 
business. This is something other companies do not have to worry about at all. As soon as someone makes an AI that 
can tell someone how to make a fantastic meal for dinner without that person having to go to an ugly, advertisement 
overload recipe page, people will flock to that application and ignore the website. It's a delicate balance that puts them 
in a tough position.



However, Google has recently gone all in on AI and is now weaving it into their products with the recent release of 
 workspace for G Suite, Bard, Codey, and many more in the pipeline. As of this writing, they are training , with 

some new ideas from the team at DeepMind that trained , and it is expected to be one of the most powerful 
models in the world. Google does have significant advantages in that they can bring tremendous compute to bear, with 
massive installations of Nvidia GPUs and their own custom tensor chips.



At the AIIA, we expect to see continued and massive improvement in these models, as well as smarter mitigations for 
their weaknesses, in the coming years. Teams will have a wealth of intelligent engines to choose from in the              
near future.



However, teams need to be aware that with great choice come many challenges. There is no guarantee that prompt 
templates or results on one model will be replicated to another model. The interface to these models changes by the 
very nature of how they are trained. 



Take a recent example from the Stable Diffusion community. The image-generating diffusion model had people up in 
arms that none of their prompts for Stable Diffusion 1.5 worked on the ill-fated . The company 
managed to restore many people's hopes with , a model that was better trained with  and 
had a better understanding of what the user was asking for in a prompt. However, this incident highlights the 
differences between perception and reality in this new world of machine learning. In a sense, the interface to the 
model is baked into the model itself and changes with each model. Unlike traditional software, where the interface 
might remain the same as the backend code changes, that's not the case with machine learning models. A diffusion 
model is different from an LLM, but the challenges of how we interact with them are similar. A new LLM, with a 
different architecture and training set, may respond in totally different ways to prompts and code that worked on a 
previous mode.



When we upgrade traditional software, we expect the way we interact with it to be largely the same. Photoshop may 
move buttons around a bit and add some new buttons and capabilities and menus, yet the core remains the same. But 
one generation of LLM might behave and respond to questions and prompts in different and unpredictable ways, and 
teams need to understand that it is not simply a matter of swapping in a “better” model and expecting everything to 
work the same way. Hard coded chains of logic may fall apart or agents may “think,” reason, and plan differently, 
breaking previously successful API and tool runs or worse.

Mustafa Suleyman

Innovator's Dilemma

Duet 
AI Gemini

AlphaGo

Stable Diffusion 2
Stable Diffusion XL new ideas

https://www.linkedin.com/in/mustafa-suleyman/
https://www.amazon.com/Innovators-Dilemma-Revolutionary-Change-Business/dp/0062060244
https://workspace.google.com/solutions/ai/
https://workspace.google.com/solutions/ai/
https://blog.google/technology/ai/google-io-2023-keynote-sundar-pichai/#palm-2-gemini
https://www.youtube.com/watch?v=WXuK6gekU1Y
https://huggingface.co/stabilityai/stable-diffusion-2
https://stability.ai/stablediffusion
https://arxiv.org/abs/2307.01952
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Open Source Models
While closed source and proprietary models currently dominate much of the LLM scene, we've also seen a flurry of activities 
in the open source space. Open source models give users access to the weights of the model and sometimes the training 
data and algorithms behind the model.



Calling these models open source is controversial with some folks in the open source community. The open source 
movement, which grew to tremendous popularity with Linux, has evolved a  for open source code. 
Many of the open source models don't fit these licenses. They might be licensed only for research or have clauses that don't 
allow certain use cases, such as for military uses or surveillance.



It's also become increasingly common for open source models not to release their training data. This is unfortunate because 
it makes it harder for other teams to replicate building the model themselves, to study the model’s bias as deeply, or to 
trace the causes of the mistakes the model makes more efficiently.



This is also completely understandable given the increasingly hostile public reactions by copyright holders to AI, which has 
led to a  looking to rewrite copyright law, along with other challenges like 

 that potentially penalizes open source AI and proprietary AI alike, with as many as 37 other countries looking to pass 
regulation, as well as the  driven by anti-AI organizations like the , which see AI as an 
existential threat and have managed to get lots of stories into popular press. 



To make it worse, many proprietary AI company leaders are calling for limits to AI in what many folks consider a classic 
move to make a regulatory moat for their proprietary products, similar to AT&T’s monopolistic position from 1913 to the 
1980s. We've also seen some leaders of proprietary AI companies call open source a threat because of its uncontrolled 
release. With many people in the general public not having a good understanding of AI, beyond sci-fi movies like the 
Terminator and 2001 a Space Odyssey, both written long before AI actually existed and which are essentially nothing but a 
Frankenstein story retold with a modern twist, it's become an increasingly contentious environment to release training data. 
To call this a hostile environment to open source is an understatement.



Despite all this, there are many teams working toward building open models. At the AIIA, we take a more flexible 
understanding of open source. We wish we lived in a world where AI trainers could easily and openly release their training 
data and where moral panic organizations didn't get so much air time but that is not the world we live in. We feel that, over 
time, as the general public interacts more with real AI instead of sci-fi AI, it will see its benefits and realistic flaws (like 
sometimes making up information, as opposed to giant superintelligent AI gone crazy), and that the moral panic will die 
down and it will become easier to release open source.



The open source movement has always had an understanding that technologies will be used for both good and bad. Linux 
powers every major public cloud, your home router, the vast majority of smartphones in the world, every major 
supercomputer in the world, medical equipment, and more. It's also used to write malware and run totalitarian 
supercomputers and surveillance state systems. On balance, the good uses far outweigh the bad uses, and at the AIIA, we 
believe the same will prove true for open source AI.



Open source AI also offers a number of major advantages over proprietary AI, such as the ability to easily and efficiently 
fine tune it with PEFT (which is impossible with proprietary LLMs as we don't have access to the weights), the ability to 
guarantee privacy of enterprise data because the model can be run on your own infrastructure (instead of trusting 
guarantees from proprietary companies that may change the policy later), and the ability to pit them against each other 
with open benchmarks more easily.



There is a tremendous range of capable open source models for various individualized tasks, like  for API usage, 
Stable Diffusion for image generation, and  for speech to text and many more.  has become the 
default platform for sharing and finding many of these models.



But while we have a range of performant models for many individualized tasks, open source LLMs have proven capable but 
so far fallen behind their closed source brethren. Hugging Face shares an  that is constantly 
changing. It is based on a series of benchmarks. What you inevitably find is that a powerful new open source base/
foundation model gets released by a large company, and then open source teams fine tune that model and/or merge the 
weights of several models and hit the top of the leaderboard only to be surpassed when the next great model is released. 
For a short time, Falcon 40B sat at the top, was quickly replaced by the fine tunes of Falcon 40B, and then displaced a 
month later by Meta’s Llama 2 and now the fine tunes of that model.

standard set of licenses

smattering of lawsuits hastily created legislation in 
the EU

full blown moral panic Future of Life

Gorilla
Whisper Hugging Face

open source LLM leaderboard

https://opensource.org/licenses/
https://mitsloan.mit.edu/ideas-made-to-matter/legal-issues-presented-generative-ai
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
https://a16z.com/2023/06/06/ai-will-save-the-world/
https://futureoflife.org/
https://gorilla.cs.berkeley.edu/
https://github.com/openai/whisper
https://huggingface.co/
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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The top base/foundation model as of this writing is still , which comes in multiple flavors, the largest and 
most powerful being a 70B parameter model. All fine tunes use that model, though the larger version of  was 
just released at the time of this report’s writing, and it is likely to start the cycle all over again. It should be noted that the 
new Falcon model does not meet true open source  and has restrictions on hosting the model for 
others to use without a separate license, so teams need to look closely before considering it in production. 



Training LLMs with current architectures is a data-and GPU-intensive endeavor. This means it's up to large labs like Meta or 
the Technology Innovation Institute (TII) to produce the best models. Even with architecture changes in the future, it will 
likely remain true that you need the most powerful and most cutting edge chips to train and power those models. 



As we’ve seen, open source models hold tremendous promise for the future of AI, but there are some serious considerations 
that teams building applications around these models need to understand before they move forward with using them in 
their applications or enterprise environment.

Meta's Llama 2
Falcon 180B

license requirements

Challenges with Running Open Source Models in Production
There are currently several major challenges to running open source models in production.

Support

There is no support ecosystem for any of these models. While this is often the case with traditional open source code, it's 
particularly pronounced with open source models. Over the years, many companies have evolved to help support 
traditional open source code, with companies like  and  at the forefront. They have SLAs and rapidly fix 
security vulnerabilities and bugs, while keeping the software backward-compatible and stable over long periods of time. For 
big, important open source projects, you can often count on a robust set of maintainers and commercial enterprises like 
Red Hat, MongoDB, Confluent, and Ubuntu to ensure the continued validity of the code. 



The same is not true for open source models. These models are truly provided “as is,” and it's up to you or your company to 
fine tune them, support them, run them, and upgrade them over time. If they make mistakes or have output that you don’t 
like, it’s up to you to fix the problem. If they cause major errors on your systems, there is nobody to call to get them fixed.



We view this as unsustainable and a massive hurdle to running these models in production currently. We expect to see two 
kinds of phenomena in the near future to help companies run open source models and to make them more commercially 
viable, with less friction to getting started. 



The first is communities dedicated to specific models that provide publicly available fine tunes and adaptors that help to 
counter bugs and make the model more stable and reliable over time. There are communities dedicated to working with 
popular models to make them safer and smarter over time, as opposed to people just fine tuning for fun to beat a 
benchmark and top a leader board. We expect to see public “bug” trackers for various issues in models, such as toxic output 
or incoherent output. We also expect these communities to create “skill packs” or “feature enhancements” over time, such 
as adding medical knowledge, enhancing and refining question answering, and enhancing mathematical capabilities.



Second, we expect to see the rise of Red Hat-style commercial open source model companies that not only run the models 
for you as a service but also support them over time, with professional “bug fixes” or “skill pack upgrades.” Bugs have a 
slightly different connotation here than with the traditional code. You can think of a model needing a bug fix any time it 
does something you don't want. If a model encourages someone to commit suicide in a conversation, companies will need 
someone to fix that bug. If you want to use the model for analyzing legal documents, you want a company to provide a 
swappable adapter that is trained/tuned on legal documents, aka a skill upgrade, so that the model excels at this kind         
of work.



It is not enough for companies to simply run these models as is and to provide the inference chips, containers, or virtual 
machines for companies. We will need an entire industry ecosystem that provides support for these models to make it 
feasible for most companies to run these in production and trust that they have someone to turn to when things go wrong.



For this to happen, we will need to see a combination of new rapid bug fix techniques, such as rapid synthetic data creation, 
which is fed back into the model, as well as an order of magnitude speed up in data labeling, fine tuning, and more. These 
are deep and challenging problems, and we expect many companies to rise to the challenge; as powerful GPUs become 
more widely available and smaller, more agile companies are able to get their hands on them.

Red Hat Ubuntu

https://ai.meta.com/llama/
https://huggingface.co/blog/falcon-180b
https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt
https://www.redhat.com/
https://ubuntu.com/
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Resource Considerations

Beyond a big lack of basic support, there are also major resource challenges with running open source LLMs in production. 



A model that tops , like  did for a short time, is hard to run in production. The first 
problem is that memory scales quadratically with the model parameter count in the transformer architecture. Falcon-40B 
requires 80–100 GB memory to run at 16 bit precision, which means a dedicated A100 or H100 for a single instance of the 
model. Running the model with low latency is even more challenging, requiring multiple datacenter GPUs.



A larger model like Meta's earlier LLaMA 1 65B or Llama 2 70B requires more RAM than a single datacenter-level GPU 
typically provides. The  estimates that, to run the full LLaMA 1 65B with low latency in production, you'd need 
a v4-16Cloud TPU or 8 A100s. 



A 175B parameter model like GPT-3, running at 16 bit precision, would eat up 351GB of memory, which would mean a v4-32 
instance or 16 A100s to run the model. Researchers are figuring out how to ratchet down the precision of these models with 
tricks like  and even more extreme . Quantizing the weights lets it run on smaller 
instances, reducing memory consumption, but because LLaMA shards model activations, that means there is a negligible 
communication reduction.



Quantization reduces the number of bits necessary to represent a value. It also shrinks the bandwidth to communicate data 
across multiple accelerators, thereby lowering the hardware requirements to serve a specific model size. There is some 
performance loss, but this approach dramatically shrinks the model size, often by as much as 50% if the precision is 
dropped to 8 bit or even more if it is dropped to 4 bit. 



As the PyTorch team pointed out, there are three major problems in running these models in production:



The first is that LLMs have several properties that make them challenging to optimize.

the Hugging Face leaderboard Falcon 40B

PyTorch team

quantization 4 bit quantization via QLoRA

LLMs use autoregressive decoding to spit out the next token based on the one that came before it, which means that 
prompt tensors have a dynamic size.

Because LLMs work with variable input prompt lengths, the input tensors must be bucketized and padded to avoid 
recompilation because of tensor shape changes.

Since models require more memory than a single inference chip can handle, you've got to use a model sharding 
scheme and distributed computing.

At the AIIA, we struggled to find any company doing the work of reducing the size of these models and running them in 
production for people. This means it's up to you or your company to do this kind of lower-level data science work, and that's 
a challenge in and of itself.



We have found a number of companies that will let you run the models themselves in a VM or container, such as  
and . These instances are charged by the hour, which is a big departure from the per-token consumption model 
that OpenAI and other major proprietary model vendors use for production billing. This represents a significant running cost 
for models, and a company would need to have near continuous use of the model to justify the cost versus          
consumption pricing.



Other companies charge per second, such as . They  for a wide range of models, 
as well as for spin up and spin down time.  A few companies have also started to charge on a per token basis for select 
models, usually Llama 2 at this point, and those include  and  (now owned by Databricks). We expect 
more companies to charge on a per token basis for major open source models in the future.



On DataCrunch, as of , we can see that running a single Nvidia H100 costs $3.50 per hour or $30,660 
per year (although the price can be reduced to $1.87 per hour with a yearly commitment). Running a 2 way Nvidia H100 
cluster will cost $7.00 per hour or $61,320 a year. Running a big model like Llama 2 70B on an 8 way cluster will cost you a 
whopping $28.00 per hour or $245,280 per year.

RunPod
DataCrunch

Replicate charge per second for interference

Deep Infra Mosaic ML

August 2023 pricing

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://falconllm.tii.ae/
https://pytorch.org/blog/path-achieve-low-inference-latency/
https://arxiv.org/pdf/2211.10438.pdf
https://huggingface.co/blog/4bit-transformers-bitsandbytes
https://www.runpod.io/
https://datacrunch.io/
https://replicate.com/
https://replicate.com/pricing
https://deepinfra.com/pricing
https://www.mosaicml.com/inference
https://datacrunch.io/products
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Costs go down using older chops like Nvidia A100s, dropping to $2.20 an hour or $19,272 per year, but they are still 
significant. Using the PyTorch team's calculations on LLaMA 65B for low latency, we can see that an 8-way Nvidia A100 pod 
will cost $17.60 per hour, or $154,176 per year, for a single instance of the model.



These costs are significant and put them out of the range for many teams. We expect costs to drop over time but to remain 
significant for organizations.



At the AIIA, we also expect to see the rise of companies that specialize in running these models for companies, serving 
them via a well-defined and well-maintained API, and to parallelize requests to them so that they can charge on a per token, 
consumption basis in the near future. Without this, these models are outside of most companies' abilities to run them at all.



This brings us to the last major problem of running open source models.

Legal Considerations

The biggest problem, by far, is a legal challenge. Many of the major open source models are not licensed for commercial 
use, and thus, companies need to tread carefully. They need to read licenses and understand their limitations                      
and restrictions.



Llama 2 and Falcon 40B were released with a commercial friendly model. However, the Meta model is not completely 
unlimited. Per , if your app exceeds more than “700 million monthly active users in the preceding 
calendar month, you must request a license from Meta.”



While we have seen some folks in the open source community point out that this license is , it's one of 
the most open models and often a good choice for teams. Most teams will never hit 700M monthly users, and if they did, it 
means that the app is popular and potentially valuable enough to afford a special license. Again, while we are disappointed 
by these kinds of limitations in open source AI, we don't see it as “not open source” or utterly useless, as some in the 
community do, since we take a more pragmatic stance on what open source means. This does not mean that companies 
cannot do better here, and we hope they do in the future, moving more toward the true spirit of open source.



However, it’s not just limitations on commercial usage that may prove a problem for app development teams. Models often 
come laden with usage policies that may prove problematic for your use case. For instance, Llama 2  in 
critical infrastructure or for heavy machinery. It’s essential that application developers understand what they can and can’t 
do with these models.



However, if you are not an app developer, the open source model world makes it a great time to be a researcher. We've seen 
a tremendous explosion of open source models, and these high-quality base models have been a big boon for these 
researchers. They can experiment with all kinds of techniques that would have been impossible if they had to bear the cost 
of training the model from scratch. That's why we've seen a flurry of models trying out techniques like 

, such as using an open source model as a world model and borrowing ideas from AlphaGo by using Monte Carlo 
Tree Search. We've also seen a huge number of instruct-tune models taught by output from ChatGPT itself or on open 
datasets like Databrick's  dataset, which was crowdsourced from Databrick's employees. A

 kicked off the trend on instruct tuning models and hasn't slowed down since, with researchers following with their 
own iterations and datasets.



As we saw earlier, instruction tuning is a supervised learning method that teaches language models how to follow 
instructions to complete tasks. A Google paper called “ ” introduced 
the concept, which caught on like wildfire with researchers. Open source models like  and  leveraged instruct 
tuning with great results, creating models that could hold a conversation on par with the top models.



But, while the presence of open source models lets researchers try out all kinds of ideas, it can be another pitfall for 
commercial enterprises. For example, many researchers often use the output of ChatGPT or GPT-4 to generate synthetic 
data for fine tuning or instruct tuning models. The  model, out of Stanford, was the first to popularize this method; 
others were quick to follow. However, the problem is that Open AI's  explicitly prohibit using GPT output to 
create models that compete with OpenAI, which creates another legal landmine for app developers if they are not paying 
close attention.

their terms and conditions

not really open source

may not be used

better logic and 
reasoning

Dolly-15k  student team at 
Stanford

Fine-tuned Language Models Are Zero-Shot Learners
Alpaca FLAN V2

Alpaca
terms of use

https://ai.meta.com/llama/license/
https://opensourceconnections.com/blog/2023/07/19/is-llama-2-open-source-no-and-perhaps-we-need-a-new-definition-of-open/
https://ai.meta.com/llama/use-policy/
https://arxiv.org/pdf/2305.14992.pdf
https://arxiv.org/pdf/2305.14992.pdf
https://huggingface.co/datasets/databricks/databricks-dolly-15k/blob/main/databricks-dolly-15k.jsonl
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://huggingface.co/papers/2109.01652
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://huggingface.co/papers/2210.11416
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://openai.com/policies/terms-of-use
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Because of this, all application developers and enterprises need to carefully review any limitations or problems with a 
model, and when in doubt, avoid that model in production. At the AIIA, we are hopeful that this will change over time as 
more and more teams build high-quality open models. We can even see a large consortium of big companies come together 
to ensure that high-quality models get trained and that they have clean datasets, clean licenses, and a clear benefit for 
everyone involved. This was tremendously helpful during the Linux era, and we suspect it will happen again in the AI era, as 
companies see their growing dependence on proprietary models.

Up Next: Advanced Design of AI-Driven Apps
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Advanced Design 
of AI-Driven Apps

As much as LLMs are the brains behind AI-
driven applications, they simply aren't 
enough to build a useful complex application 
on their own.

There are broadly two kinds of AI-driven applications:

Ones that need the planning, reasoning, and orchestration of LLMs

Ones that don’t need an LLM at all or use an LLM in a more straightforward way, such as summarization

The ones that don’t need LLMs are usually pipelines or workflows of code and models that accomplish a task or set of 
tasks like

Generate 10 images of X -> upscale them with a GAN -> test them for flaws -> discard the ones that have that flaw, like 
mangled hands.

These applications are usually more straightforward to design and have more deterministic properties. They are heavily 
code-and workflow-driven. As noted, these workflows may use an LLM in a more limited capacity, such as asking it to 
summarize text on a website, but that LLM will typically have no interaction with the user and will not be required to 
make decisions or come up with a plan.



None of this is to say that these kinds of applications are easy to design or build. As noted, they are more deterministic, 
but they also include many elements of non-determinism with the models themselves. One run of the workflow might 
produce a great summary of an article and or company website, and the next may produce a jumbled summary filled with 
made-up information and hallucinations.
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A workflow run of an imagine generator pipeline may produce 100 great images for more common concepts like “a bald 
eagle” but fail with more complex composition or ideas that it was never exposed to, such as a “centaur with a hat made 
of avocado.” 

(Source: Midjourney 5)

Agent-style applications are more complex. They require reasoning and planning by the LLM and often allow the LLM 
great freedom in how to orchestrate other software or models to accomplish their tasks.



Many agent-and AI-driven applications have gotten a reputation that they’re nothing but a “wrapper” on top of GPT-4. 
While this might be true for embedding GPT-4 into a website to answer questions, more advanced applications are much 
more complex. Even a seemingly simple application, like using an LLM to generate recipes on a website, might involve 
knowledge retrieval from a database of recipes, blacklists of terms that might produce dangerous or poisonous outputs, 
some action planning, and more. 



Most teams we talked to said they need more than GPT, Claude, or Llama 2 to build apps. They need code, additional 
models, and tools to build truly effective software. That kind of dismissive talk usually comes from folks who've never 
tried to develop an AI-driven application and dealt with the promises and pitfalls that it brings. Developing an agent-or AI-
driven app is much more challenging than simply writing a prompt and hoping that it works over the long haul.



What we are seeing from developers is usually a mashup of several major lines of research and concepts. Most often, we 
see a  approach combined with one of the various ways researchers are creating to get better reasoning and 
planning out of LLMs, such as , , creating a  that each 
offer their opinion, and then combining or averaging the outputs of those LLMs. 



The HuggingGPT approach came from a Microsoft paper that used Hugging Face’s vast descriptions of models as a way 
for LLMs to figure out what each model could do. With those text descriptions, it was enough for GPT to figure out what 
model it could call to do a particular task, such as “please generate an image where a girl is reading a book, and her pose 
is the same as in example.jpg, then please describe the image with your voice.”

Hugging GPT
reasoning action and planning (RAP) tree of thoughts swarm of LLMs

https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.10601
https://medium.com/@alcarazanthony1/orchestrating-a-swarm-of-ai-agents-to-accomplish-complex-goals-a-theorical-approach-57241b614b46
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(Source: HuggingGPT paper)

As of the writing of this report, there is no single model that can do this kind of task. In this case, the agent does the 
complex reasoning that might be hard coded in a more consistent and limited workflow design pattern. Hard coded 
workflows are easier when you generally want the same consistent output, such as “correct facial imperfections” or “blur 
the background,” like  is doing. However, if the application allows for more open-ended workflows, it's nearly 
impossible to hard code it. In the above example, the user does the following:

Lensa

Uses an example image that has a pose they want to mimic

Prompts for an image of a girl in that pose reading a book

Describes what is in the resulting image

Voices that description with text to speech

https://prisma-ai.com/lensa
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This ultimately involves several different models to do that work. We can see from the graphic that it uses OpenCV’s 
l, which extracts a skeleton-like outline of a pose from an existing image, then uses a  

(which injects that pose into the diffusion process along with the text description from the user to get better text outputs), 
an object detection model, , a vision transformer image classifier model called , a 
captioning model called  to generate the text caption, and a text-to-speech model called 

 to give voice to the text.



Essentially, this involves four core steps:

OpenPose mode controlNet model

detr-resnet-101 vit-gpt2-image-captioning
vit-gpt2-image-captioning

fastspeech-2-en-ljspeech

Task planning: LLM parses the user request into a task list and determines the execution order

Model selection: LLM assigns appropriate models to tasks

Task execution: Expert models execute the tasks

Response generation: LLM integrates the inference results of experts and generates a summary of workflow logs to 
respond to the user

As you might imagine, this is an incredibly complex pipeline where results may vary dramatically. It is also something that 
was literally impossible to do a year ago, even if you had $50 billion dollars and a small army of developers, because there 
was no software capable of this kind of automatic selection of tooling based on complex natural language instructions from 
a user. 



Putting this kind of pipeline into production will require a suite of monitoring and management tools, logging, serving 
infrastructure, security layers, and more. These kinds of applications will form the bedrock of new kinds of software apps in 
the coming years. 



While most teams we talk to are not taking this kind of totally open-ended approach to letting the LLM pick its own models 
to accomplish its tasks (yet), many teams are using a series of curated models in their pipelines to augment the capabilities 
of their agent; hence, the workflow is broadly similar. Also, keep in mind that using the HuggingGPT approach to picking 
models from a platform would run into the same legal challenges we discussed earlier around open source models.



While we expect new approaches to present themselves in the coming years, we think the basic design pattern of these 
applications will remain much the same. That being said, it’s entirely possible with new multi-modal models developed by 
Google, like Gemini, which are trained on text, images, video, audio, and more, the LLM models themselves will simply 
become more performant and capable of tasks that previously required specialized models or tools. Still, it’s unlikely that 
we will have a model that is able to do everything on its own in the next few years, so a pipeline of expert models and 
human-designed code is largely the best bet for development teams.



We also expect new architectures to come to light that allow for both better specialized, single purpose models and for 
better thinking, reasoning, planning, problem solving, and adaptability, but no team needs to wait for that day to arrive 
since there are powerful capabilities available right now. 



If developers ground themselves in today's reality, with realistic expectations, they can build some amazing things that they 
simply couldn’t build before and that is amazing.



Long-range planning and reasoning is still a work in progress with AI; it will get better. 

But for now, remember the old Google maxim: Let humans do what they do well and computers do what they do well. 



Computers do scale, simple reasoning, brute force counting, and speed, while humans give meaning to information and 
abstract ideas and do complex reasoning.

Up Next: The Future and Where It All Ends Up

https://cv-tricks.com/pose-estimation/using-deep-learning-in-opencv/
https://stablediffusionweb.com/ControlNet
https://huggingface.co/facebook/detr-resnet-101
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/facebook/fastspeech2-en-ljspeech
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The Future and Where 
It All Ends Up

We have certainly come a long way in 
what feels like a very short period of 
time in AI. We came from a 
smattering of apps over the years, 
usually underpinning tech company 
products, to AI systems directly 
exposed to end users and developers.

But like many technological developments of the past, this 
sudden explosion out of nowhere is largely an illusion. 
Technological revolutions are built over a long period of time with 
a series of very small steps. 



Optimism rises and falls, as early ideas don’t lead to the hoped-for 
breakthroughs. As noted earlier, the first chatbot, , was 
created in the 1960s at MIT. That’s a long road between the 1960s 
and 2023’s GPT-4. GPT-4 is built on the shoulders of giants. Many 
ideas, contributions, concepts, software tooling, and more led to 
its creation. Eventually, a technology hits the perfect combination 
of past ideas, building blocks, funding, and timing, and it all comes 
together. Without the vast treasure trove of data, which is the 
modern internet, the powerful GPUs from Nvidia, and the 
theoretical underpinnings of many AI researchers, GPT simply 
doesn’t exist. You need the perfect storm of circumstances to 
make a technology hit a runaway acceleration point.

ELIZA

https://dl.acm.org/doi/10.1145/365153.365168
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This is what’s happening now in AI. We’ve gone from the idea that everyone would be training their own models from  
scratch to people consuming powerful prebuilt models, and now we are moving to the time of ubiquitous AI          
applications everywhere.



In a few years, we fully expect the vast majority of companies and people to use a wide range of AI applications, even if they 
know nothing about the AI that works below the surface. Companies will have a fleet of agents that accomplish ever more 
complex tasks. This will provide a tremendous advantage of scale to early adopters of the technology. If it takes your team 
two weeks to go out and read the websites of 2000 potential partners before contacting them and my team has an agent 
which can do that work for me in a few hours and put the summary into a spreadsheet, then my team can move much faster 
and has a tremendous advantage.



Imagine a marketing agent like this in a few years, or perhaps a bit longer:



Your marketing team feeds the agent a list of 5,000 potential partners for your new release, and the system goes out and 
reads all their websites and researches them in depth, going through their GitHub, reading any articles it could find about 
them, watching news videos about them, and more. 



It would have taken months to do all that; instead, it will get done in a few days or hours. 



The agent wrote up an analysis of the partners, summarized them, and highlighted the top ones to reach out to first. Then, 
it crafted some potential outreach messages via chat, email, LinkedIn, and the new AR platform everyone’s using now. The 
letters are super-personalized, based on everything it learned about the best candidates. Your marketing team reviews 
them, fixes some poorly written passages and errors, and then gets to work on connecting with the partners.



Pretend you are a software company, and you have powerful coding agents at your disposal:



Overnight, the forums for your most popular software filled up with complaints of a new application breaking bug that stops 
users from being able to complete a common workflow.



The code agent goes through all the logs, reads all the complaints from different users, and categorizes them on similarity. 
It then reads the code and traces the problem to a new update pushed last week. It fixes the code, writes a unit and 
regression test, tests it, and pushes the fix to the GitHub repository for approval. 



It also writes a message to the users that it’s discovered the root cause of the issue and written a fix that will be live later 
that day. That calms down the chatter in the forums. A supervising programmer checks the code and approves it for a push 
later that day. 



While it might be disappointing for some people to realize we’re not at artificial general intelligence (AGI) or sci-fi level AI 
right now, what we actually have today is very powerful, and the things we can build with it will become essential for people 
and businesses everywhere. 



We have incredible new possibilities that were impossible only a year ago. LLMs, woven into agents, can go out and read 
text, interact with APIs, write software, fix bugs, do planning and basic reasoning, and more. These applications are already 
being developed now. We’re tracking some 8000 applications currently, and more seem to arrive every day as more and 
more developers get their hands on these models and come up with new ideas of how to make use of them.



We’re about to see an explosion of apps built with these new capabilities in mind that can save people lots of time and 
money. Agents will be everywhere, interacting with us at every level of our lives, from research assistants to marketing 
masterminds to agents that help us react faster to the competition and to write code and fix problems faster. 



This is a good thing. While many folks feel we need to somehow magically solve the problems of AI in a lab by anticipating 
everything that can go wrong, it’s just not possible. Problems are found as systems interact with the world. They're fixed in 
the real world, too.



We'll have smarter, more capable, more grounded, and more factual models that are safer and more steerable, along with 
powerful frameworks to help us build better models.



So start building now, and the technology will continue to evolve as we enter an age of industrialized and ambient AI.



Website


ai-infrastructure.org

LinkedIn


linkedin.com/company/ai-infrastructure-alliance

Twitter


twitter.com/AiInfra

https://ai-infrastructure.org/
https://www.linkedin.com/company/ai-infrastructure-alliance/
https://twitter.com/AiInfra

